Dr. Liying Fu | Best Researcher Award
Dr. Liying Fu | Flotation Chemistry – Researcher at Central South University, China
Dr. Liying Fu is a promising researcher at Central South University (CSU), China, specializing in flotation chemistry, sulfide mineral separation, and collector design. With a solid foundation in chemical engineering and materials science, Dr. Fu has made impactful contributions to the development of novel flotation reagents, particularly heterocyclic and hydroxamic acid-based collectors. Her work combines synthetic chemistry, surface science, and environmental engineering to address challenges in mineral processing and resource efficiency.
Academic Profile
Education
Dr. Fu’s academic path reflects strong academic rigor and a focused specialization in mineral processing and chemical engineering. She is currently pursuing her Ph.D. in Materials and Chemical Engineering at Central South University (2024–present), building on her M.Phil. in Chemical Engineering and Technology from the same institution (2020–2023). Her undergraduate studies in Applied Chemistry were completed at Jiangxi University of Science and Technology (2016–2020). Throughout her academic career, Dr. Fu has maintained top-tier GPAs and has excelled in advanced coursework including engineering ethics, advanced separation processes, and materials frontiers.
Research Experience
With a research career that began in 2021, Dr. Fu has developed expertise in synthesizing nitrogen-containing heterocyclic compounds, understanding adsorption mechanisms on mineral surfaces, and optimizing flotation conditions for both sulfide and oxide minerals.
-
Design of Nitrogen-Containing Heterocyclic Collectors (2024–Present): Developed a series of high-selectivity collectors for Zn/Pb and Zn/Fe separation under acidic conditions. Her work contributed to improved flotation performance and sustainability.
-
Thioether Hydroxamic Acid Synthesis (2024): Synthesized and characterized novel hydroxamic acid reagents with enhanced adsorption affinity on oxide minerals, offering a new pathway for improved flotation recovery.
-
Master’s Research on Hydroxyalkyl Oxadiazole-Thione Collectors (2021–2023): Demonstrated the selective flotation of galena and sphalerite using a novel surfactant. Investigated collector-mineral interactions using FTIR, XPS, and DFT simulations, leading to reduced lime use and improved environmental metrics.
-
Bachelor’s Thesis on Perovskite Oxides (2020): Synthesized DyFeO₃ perovskite materials for electrochemical sensors. Designed a dopamine sensor with high sensitivity and selectivity, addressing interference from biological compounds like uric acid and ascorbic acid.
Research Interests
Dr. Fu’s research interests span:
-
Flotation collectors for sulfide and oxide minerals
-
Molecular design and mechanism studies of flotation reagents
-
Adsorption mechanisms and interfacial chemistry
-
Rare earth mineral processing and sustainable flotation technologies
Her future work aims to integrate novel collector synthesis with green chemistry principles for efficient, selective, and environmentally responsible mineral processing.
Publications
Fu, L., Ahmed, M. M. M., Liu, S., et al. (2025). Hydroxyalkyl Oxadiazole-Thione Surfactants: Preparation, and Clean Flotation Separation of Galena from Sphalerite. (Under Review)
Ahmed, M. M. M., Liu, M., Fu, L., et al. (2025). Separating Galena from Sphalerite with 5-Heptyl-1,3,4-Oxadiazole-2-Thione Chelator and its Flotation Mechanism. (In Revision)
Fu, L., Liu, G., Huang, Y., et al. (2023). Research Progress on Azathione Flotation Collectors. Metal Mine. (Accepted, in Chinese)
Conclusion
Dr. Liying Fu represents a new generation of interdisciplinary researchers in mineral processing, combining deep theoretical insight with practical innovation in flotation chemistry. Her contributions to reagent design, adsorption mechanisms, and environmentally conscious flotation processes underscore her potential as a future leader in the field. As she advances her doctoral research at Central South University, Dr. Fu is poised to make significant strides in sustainable mineral resource utilization and rare earth element recovery, addressing critical challenges in modern materials science and chemical engineering.