Assist. Prof. Dr. Akeem Adewale | Best Researcher Award

Assist. Prof. Dr. Akeem Adewale | Best Researcher Award

Ladoke Akintola University of Technology Ogbomoso | Nigeria

Dr. Akeem Adekunle Adewale is a distinguished materials physicist and Senior Lecturer in the Department of Pure and Applied Physics at Ladoke Akintola University of Technology, Ogbomoso, Nigeria. He earned his Ph.D. in Materials Engineering from Universiti Malaysia Perlis, Malaysia, following his M.Sc. and B.Sc. degrees in Physics from the University of Ilorin, Nigeria. With a prolific academic career, Dr. Adewale has authored 25 scientific documents, accumulated over 201 citations, and achieved an h-index of 9. His research focuses on computational materials science, density functional theory (DFT), nanotechnology, and optoelectronic and thermoelectric materials modeling. Dr. Adewale’s studies have significantly contributed to understanding the structural, electronic, optical, and thermoelectric properties of advanced materials such as perovskites, semiconductors, and nanocomposites. His works have been published in reputed journals including Materials Today Communications, Heliyon, Physica Scripta, and Computational Condensed Matter. Prior to his current role, he served as a Lecturer in Physics and Materials Science at Kwara State University, Nigeria. Dr. Adewale continues to advance frontiers in materials modeling for renewable energy and semiconductor technologies. His outstanding contributions to materials research position him as a leading scholar in the field of computational materials science.

Profiles : Scopus | Google Scholar | Research Gate | Orcid

Featured Publications

Adewale, A. A., Chik, A., Adam, T., Yusuff, O. K., Ayinde, S. A., & Sanusi, Y. K. (2021). First principles calculations of structural, electronic, mechanical and thermoelectric properties of cubic ATiO3 (A= Be, Mg, Ca, Sr and Ba) perovskite oxide. Computational Condensed Matter, 28, e00562.

Adewale, A. A., Chik, A., Adam, T., Joshua, T. M., & Durowoju, M. O. (2021). Optoelectronic behavior of ZnS compound and its alloy: A first principle approach. Materials Today Communications, 27, 102077.

Olatomiwa, A. L., Adam, T., Edet, C. O., Adewale, A. A., Chik, A., Mohammed, M., Gopinath, S. C. B., & Hashim, U. (2023). Recent advances in density functional theory approach for optoelectronics properties of graphene. Heliyon, 9(3), e14279.

Sholagberu, A. A., Yahya, W. A., & Adewale, A. A. (2022). Pressure effects on the opto-electronic and mechanical properties of the double perovskite Cs₂AgInCl₆. Physica Scripta, 97(8), 085824.

Adewale, A. A., Chik, A., Zaki, R. M., Che Pa, F., Keat, Y. C., & Jamil, N. H. (2018). Thermoelectric transport properties of SrTiO₃ doped with Pm. Solid State Phenomena, 280, 3–8.

Yahya, W., Yahaya, A. A., Adewale, A. A., Sholagberu, A. A., & Olasunkanmi, N. K. (2023). A DFT study of optoelectronic, elastic and thermo-electric properties of the double perovskites Rb₂SeX₆ (X=Br, Cl). Journal of the Nigerian Society of Physical Sciences, 1418–1418.

Mr. Asif Khan | Best Researcher Award

Mr. Asif Khan | Best Researcher Award

University of Science and Technology Bannu KPK  | Pakistan

Dr. Asif Nawaz Khan is a Pakistani physicist and lecturer at the University of Science and Technology Bannu (USTB), specializing in computational materials science. He is currently pursuing a Ph.D. in Physics at USTB, after completing an M.Phil. from Gomal University and an M.Sc. from Kohat University. Since 2009, he has been actively involved in teaching, supervising BS and M.Phil students, and guiding research in computational simulations and solar cell device modeling. His research focuses on the design and analysis of lead-free perovskite materials (3D and 2D) and their structural, optical, thermoelectric, elastic, thermodynamic, and phonon properties, along with molecular dynamics studies. He employs advanced simulation tools including WIEN2k, Quantum Espresso, CASTEP, and SCAPS-1D, and applies machine learning techniques for material property prediction. Dr. Khan has co-authored multiple high-impact publications, currently holding an h-index of 3 with 38 citations, reflecting his contributions to clean energy materials and sustainable photovoltaics. His work advances the understanding and development of efficient, stable, and multifunctional energy materials. Overall, Dr. Khan is committed to advancing computational materials research and training the next generation of scientists in energy and optoelectronic applications.

Profile : Google Scholar  

Featured Publications

Khan, A., Khan, N. U., Nawaz, A., Ullah, K., & Manan, A. (2024). A DFT study to explore structural, electronic, optical and mechanical properties of lead-free Na₂MoXO₆ (X= Si, Ge, Sn) double perovskites for photovoltaic and optoelectronic applications. Computational and Theoretical Chemistry, 1240, 114834. https://doi.org/10.1016/j.comptc.2024.114834

Hosen, A., Mousa, A. A., Nemati-Kande, E., Khan, A. N., Abu-Jafar, M. S., … (2025). Systematic computational screening and design of double perovskites Q₂LiMH₆ (Q= K, Rb; M= Ga, In, Tl) for efficient hydrogen storage: A DFT and AIMD approach. Surfaces and Interfaces, 106608. https://doi.org/10.1016/j.surfin.2025.106608

Khan, A. N., Rabhi, S., Jehangir, M. A., Charif, R., Khan, N. U., Begagra, A., … (2025). Evaluating A₂SrGeI₆ (A= K and Rb) lead-free double perovskites: Structural, elastic, and optoelectronic insights for clean energy. Inorganic Chemistry Communications, 174, 113949. https://doi.org/10.1016/j.inoche.2025.113949

Khan, N. U., Ghani, U., Khan, A., Khan, A. N., Ullah, K., Ali, R., & Fadhali, M. M. (2025). Theoretical insight into stabilities and optoelectronic properties of RbZnX₃ (X=Cl, Br) halide perovskites for energy conversion applications. Optical and Quantum Electronics, 57(1), 109. https://doi.org/10.1007/s11082-025-04789-1

Rabhi, S., Khan, A. N., Chinoune, O., Charif, R., Bouri, N., Al-Qaisi, S., … (2025). Insight into NaSiCl₃: A lead-free perovskite for the next generation revealed by DFT and SCAPS-1D. Physical Chemistry Chemical Physics, 27(25), 13490–13507. https://doi.org/10.1039/D5CP02345A