Dr. Mubbashar Nazeer | Editorial Board Member

Dr. Mubbashar Nazeer | Editorial Board Member

Government College University Faisalabad | Pakistan

Dr. Mubbashar Nazeer is a prominent researcher in applied mathematics, specializing in fluid mechanics, bio-fluids, nanofluid dynamics, heat transfer, cavity flows, and finite element analysis. With an h-index of 23, over 90+ documents, and more than 1,800 citations, his research has made significant contributions to nonlinear rheology, multiphase flow modeling, magnetohydrodynamics, and thermal transport in complex fluids. His academic journey includes advanced training in applied mathematics and computational fluid dynamics, followed by extensive experience in numerical modeling, perturbation methods, and simulation-based analysis of non-Newtonian fluid flows. Dr. Nazeer’s research consistently addresses real-world engineering and physiological flow problems, emphasizing novel rheological models such as Eyring–Powell, Casson, Rabinowitsch, Ellis, Jeffrey, and Maxwell fluids. He has collaborated widely across international research groups and published influential work in high-impact journals such as International Communications in Heat and Mass Transfer, Case Studies in Thermal Engineering, Surfaces and Interfaces, and Numerical Methods for Partial Differential Equations. His contributions have earned recognition within the fluid mechanics community, including acknowledgments for outstanding research productivity and high-impact publications. Overall, Dr. Nazeer remains committed to advancing computational modeling and thermal–fluid sciences through innovative problem-solving and interdisciplinary collaboration.

Profile : Google Scholar

Featured Publications

Nayak, M. K., Shaw, S., Khan, M. I., Pandey, V. S., & Nazeer, M. (2020). Flow and thermal analysis on Darcy–Forchheimer flow of copper–water nanofluid due to a rotating disk: A static and dynamic approach. Journal of Materials Research and Technology, 9(4), 7387–7408.

Chu, Y. M., Nazeer, M., Khan, M. I., Hussain, F., Rafi, H., Qayyum, S., & Abdelmalek, Z. (2021). Combined impacts of heat source/sink, radiative heat flux, temperature-dependent thermal conductivity on forced convective Rabinowitsch fluid. International Communications in Heat and Mass Transfer, 120, 105011.

Nazeer, M., Khan, M. I., Rafiq, M. U., & Khan, N. B. (2020). Numerical and scale analysis of Eyring–Powell nanofluid towards a magnetized stretched Riga surface with entropy generation and internal resistance. International Communications in Heat and Mass Transfer, 119, 104968.

Nazir, M. W., Javed, T., Ali, N., & Nazeer, M. (2021). Effects of radiative heat flux and heat generation on magnetohydrodynamics natural convection flow of nanofluid inside a porous triangular cavity. Numerical Methods for Partial Differential Equations.