Mr. Shehzad Khan | Best Researcher Award

Mr. Shehzad Khan | Best Researcher Award

Nanjing University of Science and Technology | China

Mr. Shehzad Khan is a promising Pakistani quantum physicist with a growing research profile in the fields of quantum optics, quantum information, plasmonics, and nonlinear optics. With an h-index of 2, 3 published documents, and 7 citations, he has contributed to several high-impact journals, including Results in Physics, The European Physical Journal Plus, International Journal of Theoretical Physics, Journal of Magnetism and Magnetic Materials, and Physics Letters A. He completed his Bachelor’s degree in Physics from the University of Malakand (2019–2023), where his thesis focused on “Manipulation of Spectral Hole Burning in Atomic Medium by Doppler Broadening Effect.” His research expertise includes density matrix formalism, optical solitons, Goos-Hänchen shift, photonic spin Hall effect, and surface plasmon polaritons. Shehzad has demonstrated strong analytical and computational skills using Mathematica, MATLAB, and LaTeX, coupled with proficiency in data analysis and technical writing. Recognized for his academic excellence, he received the Higher Education Commission (HEC) Laptop Award for outstanding performance and an HEC Merit and Need-Based Scholarship. With a clear vision to advance the understanding of light-matter interaction and quantum systems, Shehzad Khan aspires to make impactful contributions to modern quantum science and optical physics.

Profile : Scopus

Featured Publications

Khan, S., Bilal, M., Uddin, S., Akgül, A., & Riaz, M. B. (2024). Spherical manipulation of lateral shifts in reflection and transmission through chiral medium. Results in Physics, 107647.

Khan, S., Saeed, M., Khan, M. A., Aldosary, S. F., & Ahmad, S. Coherent manipulation of optical solitons in four-level N-type atomic medium. International Journal of Theoretical Physics.

Ullah, R., Khan, S., Amina, S., & Javaid, S. Tunable cratering of lateral Goos–Hänchen shift in reflection and transmission of structured light in a chiral atomic medium. The European Physical Journal Plus.

Ullah, H., Khan, S., & Bilal, M. Localized electric and magnetic tangent loss via parity-time symmetry in induced high magneto-optical atomic medium. Journal of Magnetism and Magnetic Materials.

Ahmad, M., Khan, S.*, Shah, S. M. H., Salman, M., & Yousaf, M. (2025). Coherent manipulation of sensitivity of structure plasmon polariton waves. The European Physical Journal Plus.