Mr. Asif Khan | Best Researcher Award

Mr. Asif Khan | Best Researcher Award

University of Science and Technology Bannu KPK  | Pakistan

Dr. Asif Nawaz Khan is a Pakistani physicist and lecturer at the University of Science and Technology Bannu (USTB), specializing in computational materials science. He is currently pursuing a Ph.D. in Physics at USTB, after completing an M.Phil. from Gomal University and an M.Sc. from Kohat University. Since 2009, he has been actively involved in teaching, supervising BS and M.Phil students, and guiding research in computational simulations and solar cell device modeling. His research focuses on the design and analysis of lead-free perovskite materials (3D and 2D) and their structural, optical, thermoelectric, elastic, thermodynamic, and phonon properties, along with molecular dynamics studies. He employs advanced simulation tools including WIEN2k, Quantum Espresso, CASTEP, and SCAPS-1D, and applies machine learning techniques for material property prediction. Dr. Khan has co-authored multiple high-impact publications, currently holding an h-index of 3 with 38 citations, reflecting his contributions to clean energy materials and sustainable photovoltaics. His work advances the understanding and development of efficient, stable, and multifunctional energy materials. Overall, Dr. Khan is committed to advancing computational materials research and training the next generation of scientists in energy and optoelectronic applications.

Profile : Google Scholar  

Featured Publications

Khan, A., Khan, N. U., Nawaz, A., Ullah, K., & Manan, A. (2024). A DFT study to explore structural, electronic, optical and mechanical properties of lead-free Na₂MoXO₆ (X= Si, Ge, Sn) double perovskites for photovoltaic and optoelectronic applications. Computational and Theoretical Chemistry, 1240, 114834. https://doi.org/10.1016/j.comptc.2024.114834

Hosen, A., Mousa, A. A., Nemati-Kande, E., Khan, A. N., Abu-Jafar, M. S., … (2025). Systematic computational screening and design of double perovskites Q₂LiMH₆ (Q= K, Rb; M= Ga, In, Tl) for efficient hydrogen storage: A DFT and AIMD approach. Surfaces and Interfaces, 106608. https://doi.org/10.1016/j.surfin.2025.106608

Khan, A. N., Rabhi, S., Jehangir, M. A., Charif, R., Khan, N. U., Begagra, A., … (2025). Evaluating A₂SrGeI₆ (A= K and Rb) lead-free double perovskites: Structural, elastic, and optoelectronic insights for clean energy. Inorganic Chemistry Communications, 174, 113949. https://doi.org/10.1016/j.inoche.2025.113949

Khan, N. U., Ghani, U., Khan, A., Khan, A. N., Ullah, K., Ali, R., & Fadhali, M. M. (2025). Theoretical insight into stabilities and optoelectronic properties of RbZnX₃ (X=Cl, Br) halide perovskites for energy conversion applications. Optical and Quantum Electronics, 57(1), 109. https://doi.org/10.1007/s11082-025-04789-1

Rabhi, S., Khan, A. N., Chinoune, O., Charif, R., Bouri, N., Al-Qaisi, S., … (2025). Insight into NaSiCl₃: A lead-free perovskite for the next generation revealed by DFT and SCAPS-1D. Physical Chemistry Chemical Physics, 27(25), 13490–13507. https://doi.org/10.1039/D5CP02345A

Prof. Dr. Rami Ahmad El-Nabulsi | Physics Research Impact Award

Prof. Dr. Rami Ahmad El-Nabulsi | Physics Research Impact Award

Dr. Rami Ahmad El-Nabulsi |  University of South Bohemia, Czech Republic

Dr. Rami Ahmad El-Nabulsi is a globally renowned theoretical physicist and applied mathematician, currently serving as a Senior Research Fellow at the Center of Excellence in Quantum Technology, Chiang Mai University, Thailand; the Department of Optical Networks, CESNET, Prague; and the University of South Bohemia, Czech Republic. With over 390 peer-reviewed journal publications, 6,700+ citations, and an h-index of 43, Dr. El-Nabulsi has established himself as a pioneer in nonlinear dynamics, quantum fractals, and interdisciplinary modeling in physical and engineering systems.

Author Profile

Google Scholar

Education

Dr. Rami Ahmad El-Nabulsi earned his Ph.D. in Mathematical Physics and Modeling from Aix-Marseille University (AMU), France, where he developed advanced analytical frameworks for nonlinear systems. He also holds a Diploma of Advanced Studies (DEA) in Plasma Physics from the same institution, reflecting his deep expertise in high-energy and space plasma phenomena. Prior to that, he completed both his Master’s and Bachelor’s degrees in Physics, building a solid foundation in classical and modern physics that underpins his interdisciplinary research today.

Professional Experience

Dr. El-Nabulsi holds multiple international research affiliations. At Chiang Mai University, he contributes to cutting-edge studies in quantum atom optics and fractal modeling of quantum phenomena. At CESNET and the University of South Bohemia, his research extends into computational modeling, nonlinear systems, and quantum technologies for networking and information systems.

He has published extensively on advanced topics such as nonlinear Hamiltonian systems, quantum chaos, fractal acoustics, and fractional calculus applied to astrophysical and material science problems. His theoretical research is complemented by strong computational skills and interdisciplinary collaborations across nuclear, space, and condensed matter physics.

Research Skills

Dr. El-Nabulsi’s expertise spans a wide range of advanced topics in physics and applied mathematics, including quantum and fractal dynamics, nonlinear differential equations, plasma magnetohydrodynamics (MHD), space physics, nuclear engineering, and superconductivity. He is particularly well-versed in fractional calculus and mathematical modeling, which he applies to develop novel theoretical frameworks for understanding complex systems. Proficient in a variety of computational tools such as MATLAB, Mathematica, Python, Fortran, C/C++, LaTeX, and Octave, Dr. El-Nabulsi brings a computational edge to his theoretical work. His unique contribution lies in constructing new mathematical models and physical theories that interpret phenomena across multiple scales—from subatomic interactions to cosmological structures—within fractal and fractional dimensions.

Selected Publications

Chaotic dynamics and fractal analysis of nonstandard Hamiltonian systems, Chaos, Solitons and Fractals, 2025

A model for ice sheets and glaciers in fractal dimensions, Polar Science, 2025

Structural Analysis of Phononic Crystals in Fractal Dimensions, Journal of Elasticity, 2025

Modeling Stochastic Langevin Dynamics in Fractal Dimensions, Physica A, 2025

A Fractional Model for Soliton in Low-Earth Orbital Plasma, IEEE Transactions on Plasma Science, 2025

Qualitative Financial Modelling in Fractal Dimensions, Financial Innovation, 2025

Time-Dependent Heating of the Solar Corona in Fractal Dimensions, Advances in Space Research, 2024

Higher-order Quantum Waves in Fractal Dimensions, Canadian Journal of Physics, 2024

Physics Research Impact

Dr. Rami Ahmad El-Nabulsi’s research has profoundly impacted the field of theoretical and applied physics, offering groundbreaking insights into the behavior of complex systems across quantum, classical, and cosmic scales. With a solid foundation in mathematical physics and nonlinear dynamics, his work uniquely blends fractal geometry, fractional calculus, and nonlocal variational principles to model physical phenomena that conventional approaches struggle to explain.

His contributions have advanced the theoretical understanding of quantum chaos, Hamiltonian mechanics, and nonlinear wave propagation in fractal dimensions. Dr. El-Nabulsi’s innovative approaches have been applied to diverse fields including plasma magnetohydrodynamics (MHD), quantum electronics, astrophysics, superconductivity, and nuclear fusion physics. Notably, his models on magnetic chaotic field lines in fusion reactors, solar corona heating, and quantum waves in nonlocal geometries offer new perspectives for tackling real-world engineering and astrophysical problems.

Research Interests

Dr. El-Nabulsi’s research interests encompass a diverse and interdisciplinary array of topics, including quantum mechanics in fractal dimensions, geometrical and nonlinear dynamics, and chaos theory. He is deeply engaged in exploring fundamental theories such as general relativity and quantum field theory, while also contributing to applied domains like plasma physics, superconductivity, and mathematical modeling. His work extends to emerging fields such as fractal thermodynamics, multiscale physics, and biophysics, with additional focus on reactor and nuclear systems as well as acoustic metamaterials. This broad scope reflects his commitment to advancing theoretical understanding and practical applications across multiple branches of modern physics.

Conclusion

Dr. Rami Ahmad El-Nabulsi is a multidisciplinary scholar who continues to push the boundaries of theoretical physics and applied mathematics. His passion for scientific exploration, teaching, and global collaboration contributes profoundly to understanding the complex nonlinear structures that govern our universe — from the quantum to the cosmic scale.