Assoc. Prof. Dr. M. Abdul | Research Excellence Award

Assoc. Prof. Dr. M. Abdul | Research Excellence Award

Quanzhou University of Information Engineering | China

Muhammad Abdul is a researcher specializing in boson sampling, machine learning, ultracold atoms, high-resolution imaging systems, quantum technology involving surface acoustic waves, quantum phase transitions, nonlinear dynamical systems, and the invention of new materials. He earned his PhD from the University of Science and Technology of China, Hefei, where he worked on ultracold atoms in optical lattices, nonlinear optics, photonic devices, quantum networks, and boson sampling. He previously completed an M.Phil in Electronics at Quaid-i-Azam University. His professional experience includes serving as a Researcher at the University of Electronic Science and Technology of China; Assistant Professor at Sichuan University; Research Associate at Quaid-i-Azam University; Visiting Faculty at the Federal Urdu University; Lecturer at St. Mary College and the Punjab Group of Colleges; and High School Science Teacher at Down High School Mailsi. His research activities span mathematical modeling of nonlinear systems, materials development, and improvements in medication, supported in part by funding for developing a general dynamical model. He has contributed extensively to peer review across major journals and continues to advance interdisciplinary science across China, the United States, and the United Kingdom through research, teaching, and collaboration.

Profile : Orcid

Featured Publications

Abdul, M., Ko, C., Ismail, M. A., Ben Khalifa, S., Alsaif, N. A. M., Chebaane, S., Akbar, J., & Allakhverdiev, S. I. (2026). Development of rare earth metal-supported manganese selenide (MnSe₂-Nd₂O₃) heterostructure enabling robust hydrogen evolution reaction. Fuel. https://doi.org/10.1016/j.fuel.2025.136948

Abdul, M., Zhang, M., Ma, T., Alotaibi, N. H., Mohammad, S., & Luo, Y.-S. (2025). Facile synthesis of Co₃Te₄–Fe₃C for efficient overall water-splitting in an alkaline medium. Nanoscale Advances. https://doi.org/10.1039/D4NA00930D

Abdul, M., Kuo, C.-T., Ismail, M. A., Ben Khalifa, S., Alsaif, N. A. M., Chebaane, S., Shareef, M., & Shehzadi, A. (2025). Facile synthesis of novel WO₃·H₂O@Al-MOF nanocomposite for enhanced electrocatalytic hydrogen and oxygen evolution. Electrochimica Acta. https://doi.org/10.1016/j.electacta.2025.147714

Sardar, S., Nazeer, S., Naeem, F., Ben Khalifa, S., Chebaane, S., Saidani, T., Ismail, M. A., & Abdul, M. (2025). Se-decorated TiC/TiO₂ nanocomposite for overall water-splitting in alkaline medium. Fuel. https://doi.org/10.1016/j.fuel.2025.135672

Abdul, M., Ko, C., Tang, X., Ben Khalifa, S., Alsaif, N. A. M., Chebaane, S., & Akbar, J. (2025). S-scheme MnO₂–MnS₂@C heterostructure for environmental and biological applications. Ceramics International. https://doi.org/10.1016/j.ceramint.2025.09.284