Dr. Meharu Fentahun Endalew | Best Researcher Award

Dr. Meharu Fentahun Endalew | Best Researcher Award

Beijing Institute of Mathematical Sciences and Applications (BIMSA) | China

Mehari Fentahun Endalew is a researcher affiliated with Debre Tabor University, Ethiopia, and the Beijing Institute of Mathematical Sciences and Applications (BIMSA), with a verified institutional email at dtu.edu.et. His academic background and professional experience are centered on applied mathematics and mathematical modeling, with a strong emphasis on fluid mechanics. His research focuses on hydromagnetic (MHD) flows, Casson and second-grade fluids, nanofluids, porous media, heat and mass transfer, dual-phase-lag heat transfer models, fractional calculus, and convection phenomena. Endalew has authored 19 peer-reviewed documents that have received 237 citations across 149 citing documents, resulting in an h-index of 9. His scholarly output includes publications in journals such as Boundary Value Problems, Heat Transfer,Asian Research, Scientific Reports, International Journal of Fluid Mechanics Research, Journal of Applied and Computational Mechanics, Engineering Reports, Fractal and Fractional, and Partial Differential Equations in Applied Mathematics. His work demonstrates sustained contributions to analytical, numerical, and temporal analyses of complex transport phenomena, including melting heat transfer, radiative effects, magnetic field inclination, chemical reactions, and slip conditions in porous and microchannel flows. Through interdisciplinary mathematical modeling, he continues to advance the theoretical understanding of fluid flow and heat and mass transfer processes.

Citation Metrics (Scopus)

250
150
100
50
0

Citations
237

Documents
19

h-index
9

Citations

Documents

h-index


View Google Scholar Profile
View Scopus Profile

Featured Publications

Dr. Mubbashar Nazeer | Editorial Board Member

Dr. Mubbashar Nazeer | Editorial Board Member

Government College University Faisalabad | Pakistan

Dr. Mubbashar Nazeer is a prominent researcher in applied mathematics, specializing in fluid mechanics, bio-fluids, nanofluid dynamics, heat transfer, cavity flows, and finite element analysis. With an h-index of 23, over 90+ documents, and more than 1,800 citations, his research has made significant contributions to nonlinear rheology, multiphase flow modeling, magnetohydrodynamics, and thermal transport in complex fluids. His academic journey includes advanced training in applied mathematics and computational fluid dynamics, followed by extensive experience in numerical modeling, perturbation methods, and simulation-based analysis of non-Newtonian fluid flows. Dr. Nazeer’s research consistently addresses real-world engineering and physiological flow problems, emphasizing novel rheological models such as Eyring–Powell, Casson, Rabinowitsch, Ellis, Jeffrey, and Maxwell fluids. He has collaborated widely across international research groups and published influential work in high-impact journals such as International Communications in Heat and Mass Transfer, Case Studies in Thermal Engineering, Surfaces and Interfaces, and Numerical Methods for Partial Differential Equations. His contributions have earned recognition within the fluid mechanics community, including acknowledgments for outstanding research productivity and high-impact publications. Overall, Dr. Nazeer remains committed to advancing computational modeling and thermal–fluid sciences through innovative problem-solving and interdisciplinary collaboration.

Profile : Google Scholar

Featured Publications

Nayak, M. K., Shaw, S., Khan, M. I., Pandey, V. S., & Nazeer, M. (2020). Flow and thermal analysis on Darcy–Forchheimer flow of copper–water nanofluid due to a rotating disk: A static and dynamic approach. Journal of Materials Research and Technology, 9(4), 7387–7408.

Chu, Y. M., Nazeer, M., Khan, M. I., Hussain, F., Rafi, H., Qayyum, S., & Abdelmalek, Z. (2021). Combined impacts of heat source/sink, radiative heat flux, temperature-dependent thermal conductivity on forced convective Rabinowitsch fluid. International Communications in Heat and Mass Transfer, 120, 105011.

Nazeer, M., Khan, M. I., Rafiq, M. U., & Khan, N. B. (2020). Numerical and scale analysis of Eyring–Powell nanofluid towards a magnetized stretched Riga surface with entropy generation and internal resistance. International Communications in Heat and Mass Transfer, 119, 104968.

Nazir, M. W., Javed, T., Ali, N., & Nazeer, M. (2021). Effects of radiative heat flux and heat generation on magnetohydrodynamics natural convection flow of nanofluid inside a porous triangular cavity. Numerical Methods for Partial Differential Equations.