Prof. Mohamed Othman | Best Researcher Award

Prof. Mohamed Othman | Best Researcher Award

Faculty of Science, Zagazig University | Egypt

Prof. Mohamed I. A. Othman is a distinguished scholar in applied mathematics whose extensive contributions to thermoelasticity, magneto-thermoelasticity, micropolar and microstretch continua, thermo-viscoelasticity, and wave propagation have established him as a leading figure in continuum mechanics research. With a prolific publication record exceeding 300 documents, an impressive h-index of 45+, and more than 6,500 citations, his work has significantly advanced theoretical and computational models in generalized thermoelasticity, fiber-reinforced materials, and multi-field coupling phenomena involving thermal, magnetic, rotational, and diffusion effects. He has collaborated widely with international researchers and consistently published in top journals such as International Journal of Solids and Structures, Applied Mathematical Modelling, and Journal of Thermal Stresses. His academic background includes advanced studies in mathematics with specialization in continuum mechanics and thermoelastic theory, followed by decades of research and teaching experience at leading scientific institutions. His research interests span plane wave propagation, multi-phase-lag theories, Green–Naghdi thermoelasticity, porous media, magneto-thermoelastic interactions, anisotropic materials, and domain-of-influence theorems. Throughout his career, Prof. Othman has received numerous recognitions for research excellence and scientific impact. His work continues to influence modern theoretical modeling in solid mechanics, offering foundational insights for emerging engineering and applied physics applications.

Profile : Google Scholar

Featured Publications

Othman, M. I. A., & Song, Y. (2007). Reflection of plane waves from an elastic solid half-space under hydrostatic initial stress without energy dissipation. International Journal of Solids and Structures, 44(17), 5651–5664.

Othman, M. I. A., & Marin, M. (2017). Effect of thermal loading due to laser pulse on thermoelastic porous media under G-N theory. Results in Physics, 7, 3863–3872.

Othman, M. I. A. (2004). Effect of rotation on plane waves in generalized thermoelasticity with two relaxation times. International Journal of Solids and Structures, 41(11-12), 2939–2956.

Othman, M. I. A., Said, S. M., & Marin, M. (2019). A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under gravity with three-phase-lag model. International Journal of Numerical Methods for Heat and Fluid Flow, 29(12), 4788–4806.

Othman, M. I. A., Fekry, M., & Marin, M. (2020). Plane waves in generalized magneto-thermo-viscoelastic medium with voids under initial stress and laser pulse heating. Structural Engineering and Mechanics, 73(6), 621–629.

Dr. Muhammad Bilal | Editorial Board Member

Dr. Muhammad Bilal | Editorial Board Member

Shanghai University | China

Dr. Muhammad Bilal is an applied mathematics researcher at Shanghai University whose work focuses on nonlinear wave theory, optical solitons, plasma physics, and computational methods for complex dynamical systems. With a strong publication record comprising over 40 documents, more than 1,900 citations, and an h-index of 23, he has established himself as a significant contributor to mathematical physics and nonlinear wave propagation. He completed his advanced education in applied and computational mathematics and has accumulated extensive research experience through collaborative projects in wave dynamics, optical fiber modeling, modulation instability, and analytical methods for nonlinear differential equations. His research interests span nonlinear Schrödinger systems, shallow water wave models, ferromagnetic materials, fractional models, and stability analysis across diverse physical systems. Dr. Bilal has contributed widely cited analytical techniques and exact solution frameworks that have enhanced theoretical understanding and computational modeling in optical communication and fluid dynamics. His work has appeared in reputable international journals such as Mathematical Methods in the Applied Sciences, Results in Physics, Optical and Quantum Electronics, Modern Physics Letters B, and IEEE Access. He has also been recognized for his scientific impact through multiple high-quality publications and his growing influence in applied mathematics research.

Profile : Google Scholar

Featured Publications

Bilal, M. A., Zeeshan, M., Riaz, Q., Shahzad, M. K., Jabeen, H., & Haider, S. A., et al. (2021). Protocol-based deep intrusion detection for DoS and DDoS attacks using UNSW-NB15 and Bot-IoT datasets. IEEE Access, 10, 2269–2283.

Bilal, M., Seadawy, A. R., Younis, M., Rizvi, S. T. R., & Zahed, H. (2021). Dispersive propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis. Mathematical Methods in the Applied Sciences, 44(5), 4094–4104.

Bilal, M., Seadawy, A. R., Younis, M., Rizvi, S. T. R., El-Rashidy, K., & Mahmoud, S. F. (2021). Analytical wave structures in plasma physics modelled by the Gilson-Pickering equation using two integration norms. Results in Physics, 23, 103959.

Younis, M., Sulaiman, T. A., Bilal, M., Rehman, S. U., & Younas, U. (2020). Modulation instability analysis and optical solutions to the modified nonlinear Schrödinger equation. Communications in Theoretical Physics, 72(6), 065001.

Younis, M., Younas, U., Rehman, S. U., Bilal, M., & Waheed, A. (2017). Optical bright–dark and Gaussian soliton with third-order dispersion. Optik, 134, 233–238.