Assist. Prof. Dr. Bhuvneshwer Suthar | Best Researcher Award

Assist. Prof. Dr. Bhuvneshwer Suthar | Best Researcher Award

Government Dungar College, Bikaner | India

Dr. Bhuvneshwer Suthar is a distinguished physicist known for his impactful contributions to photonic crystals, optical sensors, photonic switching technologies, and advanced metamaterial-based devices. With an impressive research record comprising 110 documents, an h-index of 29, and more than 1,713 citations, he has established a strong scholarly presence in computational photonics and optical engineering. He holds advanced academic qualifications in physics and has accumulated extensive teaching and research experience as an active academic and scientist. His research interests span one-dimensional and two-dimensional photonic crystals, optical filters, biosensing mechanisms, temperature sensors, terahertz photonics, and waveguide-integrated photonic devices. Dr. Suthar’s work has led to notable advancements in ultra-compact optical components, defect-mode engineering, and high-sensitivity biosensors for biomedical and environmental applications. He has collaborated widely and contributed to several international conferences and editorial activities within the photonics community. His achievements include recognition for high-quality research outputs and influential publications that continue to support innovations in photonic device design. In conclusion, Dr. Suthar stands as a highly productive researcher whose scientific contributions significantly advance modern photonic technologies and inspire continued progress in optical sensing and photonic crystal engineering.

Profiles : Google ScholarScopus

Featured Publications

Ankita, & Suthar, B., & Bhargava, A. (2021). Biosensor application of one-dimensional photonic crystal for malaria diagnosis. Plasmonics, 16(1), 59–63.

Kumar, N., & Suthar, B. (2019). Advances in photonic crystals and devices. CRC Press.

Radhouene, M., Chhipa, M. K., Najjar, M., Robinson, S., & Suthar, B. (2017). Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sensors, 7(4), 311–316.

Gharsallah, Z., Najjar, M., Suthar, B., & Janyani, V. (2018). High sensitivity and ultra-compact optical biosensor for detection of urea concentration. Optical and Quantum Electronics, 50(6), 249.

Suthar, B., & Bhargava, A. (2021). Pressure sensor based on quantum well-structured photonic crystal. Silicon, 13(6), 1765–1768.

Dr. Muhammad Bilal | Editorial Board Member

Dr. Muhammad Bilal | Editorial Board Member

Shanghai University | China

Dr. Muhammad Bilal is an applied mathematics researcher at Shanghai University whose work focuses on nonlinear wave theory, optical solitons, plasma physics, and computational methods for complex dynamical systems. With a strong publication record comprising over 40 documents, more than 1,900 citations, and an h-index of 23, he has established himself as a significant contributor to mathematical physics and nonlinear wave propagation. He completed his advanced education in applied and computational mathematics and has accumulated extensive research experience through collaborative projects in wave dynamics, optical fiber modeling, modulation instability, and analytical methods for nonlinear differential equations. His research interests span nonlinear Schrödinger systems, shallow water wave models, ferromagnetic materials, fractional models, and stability analysis across diverse physical systems. Dr. Bilal has contributed widely cited analytical techniques and exact solution frameworks that have enhanced theoretical understanding and computational modeling in optical communication and fluid dynamics. His work has appeared in reputable international journals such as Mathematical Methods in the Applied Sciences, Results in Physics, Optical and Quantum Electronics, Modern Physics Letters B, and IEEE Access. He has also been recognized for his scientific impact through multiple high-quality publications and his growing influence in applied mathematics research.

Profile : Google Scholar

Featured Publications

Bilal, M. A., Zeeshan, M., Riaz, Q., Shahzad, M. K., Jabeen, H., & Haider, S. A., et al. (2021). Protocol-based deep intrusion detection for DoS and DDoS attacks using UNSW-NB15 and Bot-IoT datasets. IEEE Access, 10, 2269–2283.

Bilal, M., Seadawy, A. R., Younis, M., Rizvi, S. T. R., & Zahed, H. (2021). Dispersive propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis. Mathematical Methods in the Applied Sciences, 44(5), 4094–4104.

Bilal, M., Seadawy, A. R., Younis, M., Rizvi, S. T. R., El-Rashidy, K., & Mahmoud, S. F. (2021). Analytical wave structures in plasma physics modelled by the Gilson-Pickering equation using two integration norms. Results in Physics, 23, 103959.

Younis, M., Sulaiman, T. A., Bilal, M., Rehman, S. U., & Younas, U. (2020). Modulation instability analysis and optical solutions to the modified nonlinear Schrödinger equation. Communications in Theoretical Physics, 72(6), 065001.

Younis, M., Younas, U., Rehman, S. U., Bilal, M., & Waheed, A. (2017). Optical bright–dark and Gaussian soliton with third-order dispersion. Optik, 134, 233–238.

Mr. Abdul Majeed | Best Researcher Award

Mr. Abdul Majeed | Best Researcher Award

University of Malakand | Pakistan

Dr. Abdul Majeed is a researcher at the Department of Physics, University of Malakand, specializing in quantum optics, quantum computation, mathematical physics, and plasmonics. His Google Scholar profile records an h-index of 3 with 30 citations across 11 documents. His research explores the coherent control of structured light, soliton dynamics, exceptional surfaces, tunneling effects, and Goos–Hänchen shifts in multi-level atomic and chiral media. He has co-authored several recent papers in leading journals such as Chaos, Solitons & Fractals, Applied Physics B, AIMS Mathematics, Scientific Reports, and Advanced Theory and Simulations, focusing on the theoretical modeling and manipulation of nonlinear optical and quantum phenomena. Dr. Majeed’s academic background includes studies in physics and applied mathematics, and he has experience in both research and teaching within higher education. His work demonstrates a strong grasp of light–matter interactions, plasmonic behavior, and quantum control mechanisms, contributing to the advancement of quantum photonics and optical communication technologies. Although major awards are not yet documented, his growing publication record and international collaborations highlight his emerging status as a promising physicist in theoretical and computational optics. In summary, Dr. Majeed’s contributions are expanding the understanding of quantum coherence and structured-light manipulation in complex media.

Profile : Google Scholar 

Featured Publications

Ullah, I., Majeed, A., & Ali, A., Khan, Z. A. (2025). Reflection and transmission solitons via high magneto optical medium. Chaos, Solitons & Fractals, 191, 115881.

Khan, Z. A., Majeed, A., Ullah, I., & Ali, A. (2025). Coherent generation of superluminal and subluminal propagation of structured light in five level atomic medium. Applied Physics B, 131(2), 30.

Ullah, I., Majeed, A., Dalam, M. E. E., Almazah, M. M. A., & Ali, A. (2025). Coherent manipulation of tunneling and super Gaussian based Goos–Hänchen shift in five level chiral atomic medium. Applied Physics A, 131(2), 89.

Emam, W., Majeed, A., Ali, Z., Ali, A., & Pamucar, D. (2025). Periodic dark and bright optical soliton dynamics in atomic medium governed by control fields of Milnor polynomial and super-Gaussian beam. International Journal of Theoretical Physics, 64(5), 141.

Majeed, A., Ullah, I., Alduais, F. S., Al Bossly, A., Bossly, R., & Ali, A. (2025). Investigation of rotary photon drag of generated structured light in a five level atomic medium. Advanced Theory and Simulations, 8(5), 2401307.