Mr. Abdul Majeed | Best Researcher Award

Mr. Abdul Majeed | Best Researcher Award

University of Malakand | Pakistan

Dr. Abdul Majeed is a researcher at the Department of Physics, University of Malakand, specializing in quantum optics, quantum computation, mathematical physics, and plasmonics. His Google Scholar profile records an h-index of 3 with 30 citations across 11 documents. His research explores the coherent control of structured light, soliton dynamics, exceptional surfaces, tunneling effects, and Goos–Hänchen shifts in multi-level atomic and chiral media. He has co-authored several recent papers in leading journals such as Chaos, Solitons & Fractals, Applied Physics B, AIMS Mathematics, Scientific Reports, and Advanced Theory and Simulations, focusing on the theoretical modeling and manipulation of nonlinear optical and quantum phenomena. Dr. Majeed’s academic background includes studies in physics and applied mathematics, and he has experience in both research and teaching within higher education. His work demonstrates a strong grasp of light–matter interactions, plasmonic behavior, and quantum control mechanisms, contributing to the advancement of quantum photonics and optical communication technologies. Although major awards are not yet documented, his growing publication record and international collaborations highlight his emerging status as a promising physicist in theoretical and computational optics. In summary, Dr. Majeed’s contributions are expanding the understanding of quantum coherence and structured-light manipulation in complex media.

Profile : Google Scholar 

Featured Publications

Ullah, I., Majeed, A., & Ali, A., Khan, Z. A. (2025). Reflection and transmission solitons via high magneto optical medium. Chaos, Solitons & Fractals, 191, 115881.

Khan, Z. A., Majeed, A., Ullah, I., & Ali, A. (2025). Coherent generation of superluminal and subluminal propagation of structured light in five level atomic medium. Applied Physics B, 131(2), 30.

Ullah, I., Majeed, A., Dalam, M. E. E., Almazah, M. M. A., & Ali, A. (2025). Coherent manipulation of tunneling and super Gaussian based Goos–Hänchen shift in five level chiral atomic medium. Applied Physics A, 131(2), 89.

Emam, W., Majeed, A., Ali, Z., Ali, A., & Pamucar, D. (2025). Periodic dark and bright optical soliton dynamics in atomic medium governed by control fields of Milnor polynomial and super-Gaussian beam. International Journal of Theoretical Physics, 64(5), 141.

Majeed, A., Ullah, I., Alduais, F. S., Al Bossly, A., Bossly, R., & Ali, A. (2025). Investigation of rotary photon drag of generated structured light in a five level atomic medium. Advanced Theory and Simulations, 8(5), 2401307.

Mr. Weijiang Xu | Best Researcher Award

Mr. Weijiang Xu | Best Researcher Award

Guilin University of Electronic Technology | China

Dr. Weijiang Xu is a Lecturer at the School of Optoelectronic Engineering, Guilin University of Electronic Technology. He earned his Doctor of Science (2024) and Master of Science (2018) in Physics from Harbin Institute of Technology, following his Bachelor’s degree from Lingnan Normal University in 2016. His research centers on optical fiber sensors, quantum dot photonics, and upconversion luminescence for multifunctional sensing applications. Dr. Xu has authored 17 scientific documents with over 120 citations and maintains an h-index of 8, reflecting his growing influence in the field of optical materials and photonic sensing. His representative works, published in leading journals such as Optics Express, Optics Letters, Journal of Lightwave Technology, and Optics Communications, explore innovative fiber-based devices for temperature, curvature, and flow sensing. He has also contributed to the development of several patented optical fiber sensing technologies in China. Dr. Xu’s recent advancements include bubble-tunable and calibration-free optical fiber sensors employing quantum dots-filled liquid cores. His research continues to bridge nanomaterials with optical engineering for advanced environmental and biomedical sensing. With a record of impactful publications and technological innovation, Dr. Xu is emerging as a promising scholar in the field of optoelectronic sensing.

Profile :  Scopus 

Featured Publications

Xu, W., Li, Y., Shang, J., Wang, Y., Hou, L., Liu, Y., & Qu, S. (2022). Optical fiber sensor based on upconversion luminescence for synchronous temperature and curvature sensing. Optics Express, 30(18), 33136–33136.

Xu, W., Qu, J., Liu, Y., Bai, J., Li, Y., & Qu, S. (2023). Optical fiber inclinometer with dynamically controllable excitation length of quantum dots liquid-core waveguide based on a photo-controlled bubble. Optics Letters, 48(6), 1403–1406.

Xu, W., Qu, J., Liu, Y., Bai, J., Li, Y., & Qu, S. (2023). A calibration-free fiber sensor based on CdZnSe/ZnSe/ZnS quantum dots for real-time monitoring of human thermal activities. Measurement, 206, 112315.

Xu, W., Liu, Y., Li, Y., & Qu, S. (2024). Horizontal clinometer based on a movable bubble in the arc-shaped quantum dots liquid cavity. Journal of Lightwave Technology, 42(6), 2193–2199.

Qu, J., Zhang, Y., Ling, M., & Xu, W.* (2025). Heat-typed fiber liquid flow sensor with wide sensing range and high sensitivity. Journal of Lightwave Technology, 43(1), 369–375.