Mr. Zahid Ullah | Best Researcher Award

Mr. Zahid Ullah | Best Researcher Award

Islamia College University Peshawar | Pakistan 

Dr. Zahid Ullah is a computational materials scientist currently serving as a Scholar at Qurtuba University of Science and Information Technology, Peshawar, and pursuing his PhD in Physics at Islamia College Peshawar. With an h‑index of 12, over 1,100 citations, and multiple high-impact publications, he has established a strong presence in theoretical and computational condensed matter physics. His research focuses on first-principles calculations, employing density functional theory (DFT) and WIEN2k/CASTEP computational frameworks to investigate the structural, electronic, thermoelectric, and magnetic properties of materials such as spinels (MgGa₂O₄, ZnAl₂O₄) and ternary tellurides (KAlTe₂, KInTe₂). He has contributed significantly to understanding energy‑conversion materials, magnetic semiconductors, and thermoelectric performance, guiding experimental and theoretical developments for sustainable energy solutions and advanced electronic/spintronic applications. Notable publications include studies on high-temperature thermoelectric performance of MgGa₂O₄ and the electronic and magnetic characteristics of KAlTe₂ and KInTe₂. His work integrates materials informatics with computational modeling to predict and optimize material behaviors. Dr. Ullah’s ongoing research aims to design next-generation functional materials, and he is recognized for his early-career contributions to computational materials science. His efforts provide critical insights that bridge fundamental physics with practical applications in energy, electronics, and spintronics.

Profiles : Orcid | Google Scholar

Featured Publications

Ullah, Z., Khan, R., Khan, M. A., Al Otaibi, S., Althubeiti, K., & Abdullaev, S. (2025). High-temperature thermoelectric performance of spinel MgGa2O4 through a first-principles and Boltzmann transport study. Computational Materials Science, 259, 114163. https://doi.org/10.1016/j.commatsci.2025.114163

Ullah, Z., Amir, M., Bazilla, A., Ullah, S., Shahzad, U., Ullah, N., Khan, J., & Gul, S. (2024). Electronic, thermoelectric and magnetic properties of ternary telluride KAlTe2 and KInTe2 from theoretical perspective. Next Research, 1(2), 100077. https://doi.org/10.1016/j.nexres.2024.100077

Khan, M. A., & Ullah, Z. (2025). First-principles study of electronic, structural, and thermoelectric nature. Theoretical Chemistry Accounts, 144(8), 61. https://doi.org/10.1007/s00214-025-03000-0

Ullah, Z., Khan, M. A., Gul, S., Noman, M., Ullah, S., & Shahab, M. (2025). Remarkable thermoelectric and magnetic properties of anti-perovskite MgCNi3: A pathway to advanced energy conversion and spintronics. Journal of Superconductivity and Novel Magnetism, 38(4), 167. https://doi.org/10.1007/s10948-025-08800-5

Ullah, Z., & Khan, M. A. (2025). First-principles study of ZnAl2O4 for energy applications. International Journal of Modern Physics B, 2550270. https://doi.org/10.1142/S0217979225502704

Mr. Asif Khan | Best Researcher Award

Mr. Asif Khan | Best Researcher Award

University of Science and Technology Bannu KPK  | Pakistan

Dr. Asif Nawaz Khan is a Pakistani physicist and lecturer at the University of Science and Technology Bannu (USTB), specializing in computational materials science. He is currently pursuing a Ph.D. in Physics at USTB, after completing an M.Phil. from Gomal University and an M.Sc. from Kohat University. Since 2009, he has been actively involved in teaching, supervising BS and M.Phil students, and guiding research in computational simulations and solar cell device modeling. His research focuses on the design and analysis of lead-free perovskite materials (3D and 2D) and their structural, optical, thermoelectric, elastic, thermodynamic, and phonon properties, along with molecular dynamics studies. He employs advanced simulation tools including WIEN2k, Quantum Espresso, CASTEP, and SCAPS-1D, and applies machine learning techniques for material property prediction. Dr. Khan has co-authored multiple high-impact publications, currently holding an h-index of 3 with 38 citations, reflecting his contributions to clean energy materials and sustainable photovoltaics. His work advances the understanding and development of efficient, stable, and multifunctional energy materials. Overall, Dr. Khan is committed to advancing computational materials research and training the next generation of scientists in energy and optoelectronic applications.

Profile : Google Scholar  

Featured Publications

Khan, A., Khan, N. U., Nawaz, A., Ullah, K., & Manan, A. (2024). A DFT study to explore structural, electronic, optical and mechanical properties of lead-free Na₂MoXO₆ (X= Si, Ge, Sn) double perovskites for photovoltaic and optoelectronic applications. Computational and Theoretical Chemistry, 1240, 114834. https://doi.org/10.1016/j.comptc.2024.114834

Hosen, A., Mousa, A. A., Nemati-Kande, E., Khan, A. N., Abu-Jafar, M. S., … (2025). Systematic computational screening and design of double perovskites Q₂LiMH₆ (Q= K, Rb; M= Ga, In, Tl) for efficient hydrogen storage: A DFT and AIMD approach. Surfaces and Interfaces, 106608. https://doi.org/10.1016/j.surfin.2025.106608

Khan, A. N., Rabhi, S., Jehangir, M. A., Charif, R., Khan, N. U., Begagra, A., … (2025). Evaluating A₂SrGeI₆ (A= K and Rb) lead-free double perovskites: Structural, elastic, and optoelectronic insights for clean energy. Inorganic Chemistry Communications, 174, 113949. https://doi.org/10.1016/j.inoche.2025.113949

Khan, N. U., Ghani, U., Khan, A., Khan, A. N., Ullah, K., Ali, R., & Fadhali, M. M. (2025). Theoretical insight into stabilities and optoelectronic properties of RbZnX₃ (X=Cl, Br) halide perovskites for energy conversion applications. Optical and Quantum Electronics, 57(1), 109. https://doi.org/10.1007/s11082-025-04789-1

Rabhi, S., Khan, A. N., Chinoune, O., Charif, R., Bouri, N., Al-Qaisi, S., … (2025). Insight into NaSiCl₃: A lead-free perovskite for the next generation revealed by DFT and SCAPS-1D. Physical Chemistry Chemical Physics, 27(25), 13490–13507. https://doi.org/10.1039/D5CP02345A