Prof. Kazem Jamshidi-Ghale | Best Researcher Award

Prof. Kazem Jamshidi-Ghale | Best Researcher Award

Azarbaijan Shahid Madani University | Iran

Prof. Kazem Jamshidi-Ghaleh is a distinguished physicist at the Department of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran, with extensive experience in optics, photonics, and nonlinear optical phenomena. He holds a Ph.D. in Physics and has contributed over 50 peer-reviewed publications, accumulating more than 800 citations and an h-index of 19, reflecting his influential research in laser-matter interaction, nonlinear refraction, optical limiting, photonic crystals, and nanostructured thin films. Dr. Jamshidi-Ghaleh’s work spans experimental and theoretical studies on optical bistability, ultrafast laser processing, femtosecond laser interactions with materials, and the optical characterization of nanocomposites and dye molecules. He has led several projects on electrically tunable photonic devices and advanced optical measurement techniques such as moiré deflectometry. His research has been recognized in international journals including Optics Communications, Applied Physics A, and The European Physical Journal D. In addition to his research, he has mentored graduate students and collaborated with multidisciplinary teams on photonic materials and nanostructure applications. Dr. Jamshidi-Ghaleh continues to advance the field of photonics, contributing both fundamental insights and practical applications in optical materials and devices. His achievements highlight his commitment to scientific innovation, education, and the development of photonic technologies.

Profile : Google Scholar

Featured Publications

Jamshidi-Ghaleh, K., Salmani, S., & Ara, M. H. M. (2007). Nonlinear responses and optical limiting behavior of fast green FCF dye under a low power CW He–Ne laser irradiation. Optics Communications, 271(2), 551–554. https://doi.org/10.1016/j.optcom.2007.01.003

Tohidi, T., Jamshidi-Ghaleh, K., Namdar, A., & Abdi-Ghaleh, R. (2014). Comparative studies on the structural, morphological, optical, and electrical properties of nanocrystalline PbS thin films grown by chemical bath deposition using two different … Materials Science in Semiconductor Processing, 25, 197–206. https://doi.org/10.1016/j.mssp.2014.04.003

Jamshidi-Ghaleh, K., & Mansour, N. (2004). Nonlinear refraction measurements of materials using the moiré deflectometry. Optics Communications, 234(1–6), 419–425. https://doi.org/10.1016/j.optcom.2004.01.057

Mansour, N., Jamshidi-Ghaleh, K., & Ashkenasi, D. (2006). Formation of conical microstructures of silicon with picosecond laser pulses in air. Journal of Laser Micro/Nanoengineering, 1, 10.2961. https://doi.org/10.2961/jlmn.2006.1.10

Mohammad-Jafarieh, P., Akbarzadeh, A., Salamat-Ahangari, R., … Jamshidi-Ghaleh, K. (2021). Solvent effect on the absorption and emission spectra of carbon dots: Evaluation of ground and excited state dipole moment. BMC Chemistry, 15(1), 53. https://doi.org/10.1186/s13065-021-00789-1

Prof. Xin Li | Best Academic Researcher Award

Prof. Xin Li | Best Academic Researcher Award

National University of Defense Technology | China

Professor Xin Li is a leading researcher at the National University of Defense Technology with a Doctor of Engineering degree and extensive expertise in perovskite photodetectors and optoelectronic functional materials. With over 50 peer-reviewed publications, including 6 ESI Hot and 7 Highly Cited papers, he has accumulated more than 3,600 citations and an h-index of 27, reflecting his significant impact in the field. He has completed 2 National Natural Science Foundation of China (NSFC) projects and is currently leading 6 ongoing projects, alongside 3 industry consultancy initiatives. Xin Li has authored 2 books, holds over 20 Chinese invention patents, and serves on the editorial boards of Nano-Micro Letters, Journal of Materials Informatics, Carbon Neutrality, and Laser & Optoelectronics Progress. His research focuses on interface engineering, charge transport modulation, morphology-property relationships, and multifunctional perovskite and MoSe2-based devices for energy conversion and detection applications. Recognized as a 2023 Clarivate Highly Cited Researcher and IAAM Fellow, he has delivered over 100 talks at international conferences such as ICMSN-2024 and Nano S&T-2024, and organized academic salons with more than 1,000 participants. His contributions have earned the Ci Yungui Science Award (Best Researcher) and the National Golden Shield 2022 Technical Challenge Prize, advancing large-area stable photovoltaic design and multifunctional optoelectronic integration.

Profile : Research Gate

Featured Publications

Li, X., Yan, J., Tafese Bezuneh, T., & Yu, W. W. (2025). Lead-free halide perovskite Cs2ZrX6 doped with Cr3+ for multifunctional X-ray and NIR imaging. Advanced Functional Materials.

Li, X., Aftab, S., Yewale, M. A., & Kus, M. (2025). From lab to market: Strategies for stabilizing and scaling perovskite solar cells via printing technologies. Journal of Materials Chemistry A.

Li, X., Dou, X.-A., Ye, Q., & Xie, Y. (2025). Threshold-governed inversion of plasma chronology at air–silicon interfaces under tight femtosecond focusing. Applied Physics Letters.

Li, X., Yan, J., Wang, L., & Yu, W. W. (2025). Efficient dual broadband VIS-NIR emission in Mo-doped double perovskites enabling detection and imaging applications. Nano-Micro Letters.

Li, X., Zhang, K., Yang, Y., Jia, Q., & Wang, G. (2025). A method for generating large-scale implicit lattice structures for direct manufacturing. Materials & Design.