Assoc. Prof. Dr. Farzaneh Marahel | Editorial Board Member Award

Assoc. Prof. Dr. Farzaneh Marahel | Editorial Board Member Award

Islamic Azad University | Iran

Dr. Farzaneh Marahel is a faculty member in the Department of Chemistry at Islamic Azad University, Tehran, Iran, where she has developed a strong research profile in analytical chemistry, sensor design and nanomaterials-based environmental and biological monitoring. Her documented output includes over 40 publications and more than 1,000 citations according to ResearchGate. While a formal h-index value could not be verified publicly, her citation record suggests a solid impact in her field. Her education background is in chemistry and nanomaterials (Iran) and she has progressed through roles involving analytical method development and nanostructured sensor fabrication for real-world samples (blood, urine, drinks, foods). Her research interests focus on quantum dots, G-C₃N₄ nanosheets, electrochemical and spectrofluorimetric sensing platforms for toxic compounds, dyes and pharmaceutically relevant analytes. Recent work includes a resonance Rayleigh scattering technique using GSH-capped PbS quantum dots and a square-wave anodic stripping voltammetric sensor employing G-C₃N₄ nanosheets. She is also active in peer-review, having reviewed for journals such as Langmuir, Separation and Purification Technology and Sustainable Chemistry & Pharmacy. Given her continuing output and review service, she is a promising mid-career researcher whose work helps bridge nanomaterials, environmental analysis and medical-bioanalytical sensing. In summary, Dr. Marahel represents an emerging leader in nanosensor research with growing scholarly impact and an applied focus on real-world analytical challenges.

Profile : Orcid 

Featured Publications

 Amouri, A., Marahel, F., Geramizadegan, A., & Asghariganjeh, M. R. (2025). Design of a resonance Rayleigh scattering technique and spectrofluorimetric method using GSH-capped PbS quantum dots for sensing nortriptyline in urine and blood samples. Spectroscopy Letters, 58(9), [Article e2554233]. https://doi.org/10.1080/00387010.2025.2554233

 Marahel, F., & Niknam, L. (2022). Application electrochemical sensor based on nanosheets G-C3N4/CPE by square-wave anodic stripping voltammetric for measuring amounts of toxic tartrazine color residual in different drink and foodstuffs. Journal of Environmental Science and Health, Part B, 57(6), 457–467. https://doi.org/10.1080/03601234.2022.2064676

Assist. Prof. Dr. Shravan Kumar Rudrabhatla | Best Researcher Award

Assist. Prof. Dr. Shravan Kumar Rudrabhatla | Best Researcher Award

Anurag University | India

Dr. Shravan Kumar Rudrabhatla is an Assistant Professor at Anurag University, Hyderabad, specializing in fluid dynamics and artificial neural networks. He earned his Ph.D. in Applied Mathematics from the National Institute of Technology (NIT), Warangal in 2023 under the supervision of Prof. D. Srinivasacharya, focusing on the artificial neural network treatment of Casson fluid flow over a radially stretching sheet. His research integrates deep learning, computational fluid dynamics, and heat and mass transfer modeling, contributing to the understanding of complex non-Newtonian flows. Dr. Rudrabhatla has authored 6 research articles, accumulated 49 citations from 43 documents, and achieved an h-index of 4, as indexed by Scopus. His recent works include publications in European Journal of Mechanics B/Fluids, Physics of Fluids, Mathematical Models and Computer Simulations, and Journal of Thermal Analysis and Calorimetry. He has participated in numerous faculty development programs, workshops, and GIAN courses focused on machine learning and computational modeling. His academic journey is complemented by strong technical skills in Python, MATLAB, and C++, and a teaching background spanning over a decade. Dr. Rudrabhatla’s work continues to advance the intersection of mathematics, fluid mechanics, and artificial intelligence, contributing significantly to modern computational sciences.

Profiles : Orcid | Google Scholar | Scopus

Featured Publications

Srinivasacharya, D., & Kumar, R. S. (2022). Artificial neural network modeling of the Casson fluid flow over unsteady radially stretching sheet with Soret and Dufour effects. Journal of Thermal Analysis and Calorimetry, 147, 14891–14903. https://doi.org/10.1007/s10973-022-11694-w

Srinivasacharya, D., & Shravan Kumar, R. (2023). Neural network analysis for bioconvection flow of Casson fluid over a vertically extending sheet. International Journal of Applied and Computational Mathematics, 9(5), 80. https://doi.org/10.1007/s40819-023-01556-w

Srinivasacharya, D., & Kumar, R. S. (2023). An artificial neural network solution for the Casson fluid flow past a radially stretching sheet with magnetic and radiation effect. Mathematical Models and Computer Simulations, 15(5), 944–955. https://doi.org/10.1134/S2070048223050101

Nallapu, S., Sneha, G. S., & Kumar, S. R. (2018). Effect of slip on Jeffrey fluid flow through an inclination tube. Journal of Physics: Conference Series, 1000(1), 012041. https://doi.org/10.1088/1742-6596/1000/1/012041

Rudrabhatla, S. K., & Srinivasacharya, D. (2025). Deep learning framework for Casson fluid flow: A PINN approach to heat and mass transfer with chemical reaction and viscous dissipation. European Journal of Mechanics – B/Fluids, 204401. https://doi.org/10.1016/j.euromechflu.2025.204401

Assoc. Prof. Dr. Farzaneh Marahel | Best Researcher Award

Assoc. Prof. Dr. Farzaneh Marahel | Best Researcher Award

Islamic Azad University | Iran

Dr. Farzaneh Marahel is a faculty member in the Department of Chemistry at Islamic Azad University, Tehran, Iran, where she has developed a strong research profile in analytical chemistry, sensor design and nanomaterials-based environmental and biological monitoring. Her documented output includes over 40 publications and more than 1,000 citations according to ResearchGate. While a formal h-index value could not be verified publicly, her citation record suggests a solid impact in her field. Her education background is in chemistry and nanomaterials (Iran) and she has progressed through roles involving analytical method development and nanostructured sensor fabrication for real-world samples (blood, urine, drinks, foods). Her research interests focus on quantum dots, G-C₃N₄ nanosheets, electrochemical and spectrofluorimetric sensing platforms for toxic compounds, dyes and pharmaceutically relevant analytes. Recent work includes a resonance Rayleigh scattering technique using GSH-capped PbS quantum dots and a square-wave anodic stripping voltammetric sensor employing G-C₃N₄ nanosheets. She is also active in peer-review, having reviewed for journals such as Langmuir, Separation and Purification Technology and Sustainable Chemistry & Pharmacy. Given her continuing output and review service, she is a promising mid-career researcher whose work helps bridge nanomaterials, environmental analysis and medical-bioanalytical sensing. In summary, Dr. Marahel represents an emerging leader in nanosensor research with growing scholarly impact and an applied focus on real-world analytical challenges.

Profile : Orcid 

Featured Publications

 Amouri, A., Marahel, F., Geramizadegan, A., & Asghariganjeh, M. R. (2025). Design of a resonance Rayleigh scattering technique and spectrofluorimetric method using GSH-capped PbS quantum dots for sensing nortriptyline in urine and blood samples. Spectroscopy Letters, 58(9), [Article e2554233]. https://doi.org/10.1080/00387010.2025.2554233

 Marahel, F., & Niknam, L. (2022). Application electrochemical sensor based on nanosheets G-C3N4/CPE by square-wave anodic stripping voltammetric for measuring amounts of toxic tartrazine color residual in different drink and foodstuffs. Journal of Environmental Science and Health, Part B, 57(6), 457–467. https://doi.org/10.1080/03601234.2022.2064676