Assoc. Prof. Dr. Chao Mei | Best Researcher Award

Assoc. Prof. Dr. Chao Mei | Best Researcher Award

Ningbo University | China

Chao Mei is an Associate Professor at the School of Physical Science and Technology, Ningbo University, recognized for his significant contributions to nonlinear optics, ultrafast spectroscopy, and strong-field physics. With an h-index of 16, over 600+ citations, and more than 40 peer-reviewed documents, his research has advanced pulse compression, photonic crystal fibers, mid-infrared photonics, and plasmonic sensing technologies. He received strong foundational training in optics and photonics through graduate studies and has accumulated extensive academic and research experience through sustained collaborations across leading photonics laboratories. Dr. Mei’s work integrates theoretical modeling, materials design, and experimental ultrafast photonics, with impactful achievements such as high-temperature hollow-core fiber interferometry, advanced mid-infrared pulse compression, and high-sensitivity plasmonic fiber sensors. His research interests span χ(3) nonlinear processes, supercontinuum generation, silicon-based photonic waveguides, parabolic pulse evolution, fiber-based sensing, and the development of ultrafast light sources. He has contributed to high-impact journals including Journal of Lightwave Technology, Optics Letters, Optics Express, and Physical Review A. Dr. Mei has been recognized through multiple research grants and collaborative project awards that underscore his influence in the field. Overall, his body of work continues to advance next-generation ultrafast photonic devices and integrated nonlinear optical systems.

Profile : Google Scholar

Featured Publications

Liu, D., Wu, Q., Mei, C., Yuan, J., Xin, X., Mallik, A. K., … Han, W. (2018). Hollow core fiber based interferometer for high-temperature (1000° C) measurement. Journal of Lightwave Technology, 36(9), 1583–1590.

Qu, Y., Yuan, J., Zhou, X., Li, F., Mei, C., Yan, B., … Long, K. (2019). A V-shape photonic crystal fiber polarization filter based on surface plasmon resonance effect. Optics Communications, 452, 1–6.

Mei, C., Li, F., Yuan, J., Kang, Z., Zhang, X., Wang, K., … Yan, B. (2016). High degree picosecond pulse compression in chalcogenide-silicon slot waveguide taper. Journal of Lightwave Technology, 34(16), 3843–3852.

Zhang, J., Yuan, J., Qu, Y., Qiu, S., Mei, C., Zhou, X., … Wang, K. (2022). A surface plasmon resonance-based photonic crystal fiber sensor for simultaneously measuring the refractive index and temperature. Polymers, 14(18), 3893.

Assist. Prof. Dr. Bhuvneshwer Suthar | Best Researcher Award

Assist. Prof. Dr. Bhuvneshwer Suthar | Best Researcher Award

Government Dungar College, Bikaner | India

Dr. Bhuvneshwer Suthar is a distinguished physicist known for his impactful contributions to photonic crystals, optical sensors, photonic switching technologies, and advanced metamaterial-based devices. With an impressive research record comprising 110 documents, an h-index of 29, and more than 1,713 citations, he has established a strong scholarly presence in computational photonics and optical engineering. He holds advanced academic qualifications in physics and has accumulated extensive teaching and research experience as an active academic and scientist. His research interests span one-dimensional and two-dimensional photonic crystals, optical filters, biosensing mechanisms, temperature sensors, terahertz photonics, and waveguide-integrated photonic devices. Dr. Suthar’s work has led to notable advancements in ultra-compact optical components, defect-mode engineering, and high-sensitivity biosensors for biomedical and environmental applications. He has collaborated widely and contributed to several international conferences and editorial activities within the photonics community. His achievements include recognition for high-quality research outputs and influential publications that continue to support innovations in photonic device design. In conclusion, Dr. Suthar stands as a highly productive researcher whose scientific contributions significantly advance modern photonic technologies and inspire continued progress in optical sensing and photonic crystal engineering.

Profiles : Google ScholarScopus

Featured Publications

Ankita, & Suthar, B., & Bhargava, A. (2021). Biosensor application of one-dimensional photonic crystal for malaria diagnosis. Plasmonics, 16(1), 59–63.

Kumar, N., & Suthar, B. (2019). Advances in photonic crystals and devices. CRC Press.

Radhouene, M., Chhipa, M. K., Najjar, M., Robinson, S., & Suthar, B. (2017). Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sensors, 7(4), 311–316.

Gharsallah, Z., Najjar, M., Suthar, B., & Janyani, V. (2018). High sensitivity and ultra-compact optical biosensor for detection of urea concentration. Optical and Quantum Electronics, 50(6), 249.

Suthar, B., & Bhargava, A. (2021). Pressure sensor based on quantum well-structured photonic crystal. Silicon, 13(6), 1765–1768.

Assist. Prof. Dr. Ying Tang | Best Researcher Award

Assist. Prof. Dr. Ying Tang | Best Researcher Award

Shenzhen Technology University | China

Dr. Ying Tang is an Assistant Professor at Shenzhen Technology University in the College of Integrated Circuits and Optoelectronic Chips, appointed in March 2024. She earned her Ph.D. in Opto-electronics Information Science and Engineering from South China University of Technology in 2022 and conducted research at the National Laboratory of Solid State Microstructures and the Collaborative Innovation Center of Advanced Microstructures. Her research expertise spans semiconductor optics, single-particle spectroscopy, ultrafast spectroscopy, exciton dynamics, and quantum photonics, with particular focus on perovskite and CdSe/CdS nanocrystals. Dr. Tang has authored 10 high-impact publications with over 526 citations and an h-index of 9, addressing topics such as exciton fine structures, multiexciton emission, electric-field modulation, and low-threshold lasing in nanostructures. Her contributions advance the understanding and control of optical properties in nanoscale materials, bridging fundamental physics with practical optoelectronic applications. She is recognized for pioneering studies in quantum photonics and high-performance nanomaterials, establishing herself as an emerging leader in the field.

Profiles : Research Gate | Orcid

Featured Publications

Tang, Y., Qin, Q., Yang, H., Feng, S., Zhang, C., Zhang, J., Xiao, M., & Wang, X. (2022). Electrical control of biexciton Auger recombination in single CdSe/CdS nanocrystals. Nanoscale.

Zhang, L., Yang, H., Tang, Y., Xiang, W., Wang, C., Xu, T., Wang, X., Xiao, M., & Zhang, J. (2022). High-performance CdSe/CdS@ZnO quantum dots enabled by ZnO sol as surface ligands: A novel strategy for improved optical properties and stability. Chemical Engineering Journal.

Tang, Y., Yin, C., Jing, Q., Zhang, C., Yu, Z.-G., Lu, Z., Xiao, M., & Wang, X. (2022). Quantized exciton motion and fine energy-level structure of a single perovskite nanowire. Nano Letters.

Hu, J., Bi, C., Zhang, X., Lu, Y., Zhou, W., Zheng, Z., Tang, Y., Lu, F., Yao, Z., & Tian, B. (2022). Yellow-light emitted single halide CsPbI3 nanowire. Applied Materials Today.

Yang, H., Zhang, L., Tang, Y., Xiang, W., Wang, X., Xiao, M., Cui, Y., & Zhang, J. (2021). Enhanced multiexciton emission property in gradient alloy core/shell CdZnSeS/ZnS quantum dots: Balance between surface passivation and strain-induced lattice defect. The Journal of Physical Chemistry C.