Mr. Zahid Ullah | Best Researcher Award

Mr. Zahid Ullah | Best Researcher Award

Islamia College University Peshawar | Pakistan 

Dr. Zahid Ullah is a computational materials scientist currently serving as a Scholar at Qurtuba University of Science and Information Technology, Peshawar, and pursuing his PhD in Physics at Islamia College Peshawar. With an h‑index of 12, over 1,100 citations, and multiple high-impact publications, he has established a strong presence in theoretical and computational condensed matter physics. His research focuses on first-principles calculations, employing density functional theory (DFT) and WIEN2k/CASTEP computational frameworks to investigate the structural, electronic, thermoelectric, and magnetic properties of materials such as spinels (MgGa₂O₄, ZnAl₂O₄) and ternary tellurides (KAlTe₂, KInTe₂). He has contributed significantly to understanding energy‑conversion materials, magnetic semiconductors, and thermoelectric performance, guiding experimental and theoretical developments for sustainable energy solutions and advanced electronic/spintronic applications. Notable publications include studies on high-temperature thermoelectric performance of MgGa₂O₄ and the electronic and magnetic characteristics of KAlTe₂ and KInTe₂. His work integrates materials informatics with computational modeling to predict and optimize material behaviors. Dr. Ullah’s ongoing research aims to design next-generation functional materials, and he is recognized for his early-career contributions to computational materials science. His efforts provide critical insights that bridge fundamental physics with practical applications in energy, electronics, and spintronics.

Profiles : Orcid | Google Scholar

Featured Publications

Ullah, Z., Khan, R., Khan, M. A., Al Otaibi, S., Althubeiti, K., & Abdullaev, S. (2025). High-temperature thermoelectric performance of spinel MgGa2O4 through a first-principles and Boltzmann transport study. Computational Materials Science, 259, 114163. https://doi.org/10.1016/j.commatsci.2025.114163

Ullah, Z., Amir, M., Bazilla, A., Ullah, S., Shahzad, U., Ullah, N., Khan, J., & Gul, S. (2024). Electronic, thermoelectric and magnetic properties of ternary telluride KAlTe2 and KInTe2 from theoretical perspective. Next Research, 1(2), 100077. https://doi.org/10.1016/j.nexres.2024.100077

Khan, M. A., & Ullah, Z. (2025). First-principles study of electronic, structural, and thermoelectric nature. Theoretical Chemistry Accounts, 144(8), 61. https://doi.org/10.1007/s00214-025-03000-0

Ullah, Z., Khan, M. A., Gul, S., Noman, M., Ullah, S., & Shahab, M. (2025). Remarkable thermoelectric and magnetic properties of anti-perovskite MgCNi3: A pathway to advanced energy conversion and spintronics. Journal of Superconductivity and Novel Magnetism, 38(4), 167. https://doi.org/10.1007/s10948-025-08800-5

Ullah, Z., & Khan, M. A. (2025). First-principles study of ZnAl2O4 for energy applications. International Journal of Modern Physics B, 2550270. https://doi.org/10.1142/S0217979225502704

Assist. Prof. Dr. Fikadu Geldasa | Best Researcher Award

Assist. Prof. Dr. Fikadu Geldasa | Best Researcher Award

Walter Sisulu University | South Africa

Dr. Fikadu Takele Geldasa is an Assistant Professor of Physics at Walter Sisulu University, South Africa, and Oda Bultum University, Ethiopia. He has published 19 Scopus-indexed research papers, received more than 323 citations, and holds an h-index of 6. He obtained his Ph.D. in Materials Physics from Adama Science and Technology University. His research focuses on experimental and computational studies of functional nanomaterials using density functional theory (DFT) and materials characterization techniques. Dr. Geldasa works on the structural, electronic, and optical properties of doped metal oxides, perovskites, and semiconductor materials for applications in photocatalysis, energy conversion, and environmental remediation. His recent works on doped TiO₂ and α-NiS nanostructures provide insights into bandgap engineering and defect tuning for enhanced visible-light photocatalytic activity. He has published his research in leading journals such as Scientific Reports, Nanomaterials, Materials, and Physica Scripta. His interdisciplinary research integrates theory and experiment to develop advanced materials for renewable energy and sustainable technology. Through his scientific contributions, Dr. Geldasa is establishing himself as a promising researcher in materials physics and computational materials science, contributing significantly to the progress of clean energy and environmental technologies.

Profiles : ScopusOrcid | Research GateGoogle Scholar

Featured Publications

Geldasa, F. T., Dejene, F. B., Kebede, M. A., Hone, F. G., & Jira, E. T. (2025). Density functional theory study of chlorine, fluorine, nitrogen, and sulfur doped rutile TiO₂ for photocatalytic application. Scientific Reports, 15(1), 3390. https://doi.org/10.1038/s41598-024-84316-0

Geldasa, F. T., & Dejene, F. B. (2025). Transition metal doping effects on the structural, mechanical, electronic, and optical properties of α-NiS for photocatalysis applications via DFT + U insights. Applied Physics A. https://doi.org/10.1007/s00339-025-08942-9

Geldasa, F. T., & Dejene, F. B. (2025). First principles investigation of niobium and carbon-doped titanium dioxide for enhanced visible light photocatalytic activity. ChemistrySelect. https://doi.org/10.1002/slct.202504529

Geldasa, F. T., & Dejene, F. B. (2025). Exploration of vanadium and rhenium co-doped TiO₂ for enhanced photocatalytic performance via first principle density functional theory investigation. Physica Scripta. https://doi.org/10.1088/1402-4896/adf156

Geldasa, F. T., & Dejene, F. B. (2025). Density functional theory based exploration of structural, electronic, mechanical, thermodynamic, and optical properties of α-NiS for CO₂ adsorption. Journal of Physics: Condensed Matter. https://doi.org/10.1088/1361-648X/aded5f