Mr. Shewa Getachew Mamo | Best Researcher Award

Mr. Shewa Getachew Mamo | Best Researcher Award

Wolkite University | Ethiopia

Shewa Getachew is a physicist at Wolkite University with an MSc in Physics and an emerging research profile in plasmonics, nonlinear optics, and nanocomposite photonics. With an h-index of 2, eight indexed documents, and ten citations from four sources, his work focuses on the optical properties of core–shell nanostructures, including refractive index engineering, group velocity modulation, optical bistability, and local field enhancement in metal–dielectric composites. His publications span reputable journals such as Physica E, Brazilian Journal of Physics, Applied Physics B, Optical Review, Canadian Journal of Physics, and The European Physical Journal D. His research explores size-, geometry-, and dielectric-dependent plasmonic responses in nanomaterials, contributing to slow- and fast-light applications, nonlinear optical switching, and photonic device optimization. He has also conducted interdisciplinary studies in phytochemistry and higher education pedagogy. As a physics lecturer, he integrates theoretical modeling with computational simulation to advance understanding of nano-optical phenomena. His contributions were recognized with the World Research Awards (WRA) Best Innovation Award (Physics and Astronomy) in 2024. Overall, his work continues to support the development of advanced photonic materials with tunable optical responses for next-generation nanotechnology applications.

Profiles : Orcid | Scopus

Featured Publications

Getachew, S. (2026). Size and dielectric-dependent plasmonic resonances in CdS@Ag core–shell quantum dots: Field enhancement, dispersion, and slow-light effects. Physica E: Low-Dimensional Systems and Nanostructures. https://doi.org/10.1016/j.physe.2025.116371

Getachew, S. (2025). Size-dependent dispersion and slow-light effects in CdS@Ag core-shell quantum dots: A theoretical study of plasmonic resonances and group velocity modulation. Brazilian Journal of Physics. https://doi.org/10.1007/s13538-025-01906-7

Getachew, S. (2025). Geometric and dielectric engineering of linear optical response in CdS@Ag core–shell quantum dots: A theoretical study of plasmonic enhancement and host effects. Applied Physics B. https://doi.org/10.1007/s00340-025-08578-w

Getachew, S. (2025). Geometric shape’s impact on core-shell nanocomposites’ optical properties. Journal of Computational Electronics. https://doi.org/10.1007/s10825-025-02388-1

Assoc. Prof. Dr. Farzaneh Marahel | Editorial Board Member Award

Assoc. Prof. Dr. Farzaneh Marahel | Editorial Board Member Award

Islamic Azad University | Iran

Dr. Farzaneh Marahel is a faculty member in the Department of Chemistry at Islamic Azad University, Tehran, Iran, where she has developed a strong research profile in analytical chemistry, sensor design and nanomaterials-based environmental and biological monitoring. Her documented output includes over 40 publications and more than 1,000 citations according to ResearchGate. While a formal h-index value could not be verified publicly, her citation record suggests a solid impact in her field. Her education background is in chemistry and nanomaterials (Iran) and she has progressed through roles involving analytical method development and nanostructured sensor fabrication for real-world samples (blood, urine, drinks, foods). Her research interests focus on quantum dots, G-C₃N₄ nanosheets, electrochemical and spectrofluorimetric sensing platforms for toxic compounds, dyes and pharmaceutically relevant analytes. Recent work includes a resonance Rayleigh scattering technique using GSH-capped PbS quantum dots and a square-wave anodic stripping voltammetric sensor employing G-C₃N₄ nanosheets. She is also active in peer-review, having reviewed for journals such as Langmuir, Separation and Purification Technology and Sustainable Chemistry & Pharmacy. Given her continuing output and review service, she is a promising mid-career researcher whose work helps bridge nanomaterials, environmental analysis and medical-bioanalytical sensing. In summary, Dr. Marahel represents an emerging leader in nanosensor research with growing scholarly impact and an applied focus on real-world analytical challenges.

Profile : Orcid 

Featured Publications

 Amouri, A., Marahel, F., Geramizadegan, A., & Asghariganjeh, M. R. (2025). Design of a resonance Rayleigh scattering technique and spectrofluorimetric method using GSH-capped PbS quantum dots for sensing nortriptyline in urine and blood samples. Spectroscopy Letters, 58(9), [Article e2554233]. https://doi.org/10.1080/00387010.2025.2554233

 Marahel, F., & Niknam, L. (2022). Application electrochemical sensor based on nanosheets G-C3N4/CPE by square-wave anodic stripping voltammetric for measuring amounts of toxic tartrazine color residual in different drink and foodstuffs. Journal of Environmental Science and Health, Part B, 57(6), 457–467. https://doi.org/10.1080/03601234.2022.2064676

Dr. Ashish Varma | Young Scientist Award

Dr. Ashish Varma | Young Scientist Award

K. N. Government P. G. College, Gyanpur, Bhadohi | India

Dr. Ashish Varma is an accomplished physicist and Assistant Professor at K. N. Government P. G. College, Gyanpur, Bhadohi, India. He earned his Ph.D. in Physics from the University of Allahabad in 2022 and has established himself as an emerging researcher in plasma physics, laser–matter interaction, and nanostructured materials. With 31 publications, over 447 citations from 117 documents, and an h-index of 13, Dr. Varma’s work demonstrates significant impact in nonlinear laser-plasma interactions, electron Bernstein wave excitation, and nanocluster plasma dynamics. His recent studies focus on laser beam–assisted plasma heating, surface plasma wave generation, and nonlinear absorption in arrays of vertically aligned carbon nanotubes. Dr. Varma has contributed to leading journals such as Optik, Laser Physics, Journal of the Korean Physical Society, and Optical and Quantum Electronics. He has also explored computational condensed matter physics, investigating electronic, structural, and optical properties of advanced materials. A recipient of the UGC Junior Research Fellowship (JRF), he continues to advance fundamental understanding of laser-plasma coupling phenomena with applications in photonics and nanotechnology. Through his active research, Dr. Varma is contributing to the development of next-generation optical and plasma-based materials and technologies.

Profile: Google Scholar | Orcid | Scopus

Featured Publications

Varma, A., Kumar, A., Mishra, S. P., Kumar, A., & Kumar, A. (2025). Surface plasma wave aided Laguerre–Gaussian laser beam second harmonic generation in arrays of vertically aligned carbon nanotube over metal surface. Journal of Laser Applications, 37(8), 7–12. https://doi.org/10.2351/7.0001819

Vishwakarma, M. K., Mishra, S. P., Kumar, A., Kumar, A., & Varma, A. (2025). Enhanced electron heating by electron plasma wave assisted beat wave of two different profile laser beams in magnetized collisional plasma with density rippled. Journal of the Korean Physical Society, 86(7), 1–8. https://doi.org/10.1007/s40042-025-01446-y

Ali, K., Kumar, S., Kumar, A., & Varma, A. (2025). Influence of field optimization property of Hermite cosh-Gaussian laser beam on nonlinear absorption in arrays of vertically aligned cylindrical carbon nanotubes. Radiation Effects and Defects in Solids, 180(4), 245–259. https://doi.org/10.1080/10420150.2025.2484740

Ansari, A., Patel, M. S., Mishra, S. P., Kumar, A., Kumar, A., & Varma, A. (2025). Excitation of large-amplitude electron plasma wave by counterpropagation of two laser beams in spherical nanoparticles. Laser Physics, 35(4), 046001. https://doi.org/10.1088/1555-6611/adc559

Kumar, S., Ali, K., Kumar, A., Kumar, A., Mishra, S. P., & Varma, A. (2025). Langmuir wave-assisted two-photon decay of an amplitude-modulated Gaussian laser beam in rippled density plasma. Arabian Journal for Science and Engineering, 50(1), 112–122. https://doi.org/10.1007/s13369-024-09234-9

Assoc. Prof. Dr. Farzaneh Marahel | Best Researcher Award

Assoc. Prof. Dr. Farzaneh Marahel | Best Researcher Award

Islamic Azad University | Iran

Dr. Farzaneh Marahel is a faculty member in the Department of Chemistry at Islamic Azad University, Tehran, Iran, where she has developed a strong research profile in analytical chemistry, sensor design and nanomaterials-based environmental and biological monitoring. Her documented output includes over 40 publications and more than 1,000 citations according to ResearchGate. While a formal h-index value could not be verified publicly, her citation record suggests a solid impact in her field. Her education background is in chemistry and nanomaterials (Iran) and she has progressed through roles involving analytical method development and nanostructured sensor fabrication for real-world samples (blood, urine, drinks, foods). Her research interests focus on quantum dots, G-C₃N₄ nanosheets, electrochemical and spectrofluorimetric sensing platforms for toxic compounds, dyes and pharmaceutically relevant analytes. Recent work includes a resonance Rayleigh scattering technique using GSH-capped PbS quantum dots and a square-wave anodic stripping voltammetric sensor employing G-C₃N₄ nanosheets. She is also active in peer-review, having reviewed for journals such as Langmuir, Separation and Purification Technology and Sustainable Chemistry & Pharmacy. Given her continuing output and review service, she is a promising mid-career researcher whose work helps bridge nanomaterials, environmental analysis and medical-bioanalytical sensing. In summary, Dr. Marahel represents an emerging leader in nanosensor research with growing scholarly impact and an applied focus on real-world analytical challenges.

Profile : Orcid 

Featured Publications

 Amouri, A., Marahel, F., Geramizadegan, A., & Asghariganjeh, M. R. (2025). Design of a resonance Rayleigh scattering technique and spectrofluorimetric method using GSH-capped PbS quantum dots for sensing nortriptyline in urine and blood samples. Spectroscopy Letters, 58(9), [Article e2554233]. https://doi.org/10.1080/00387010.2025.2554233

 Marahel, F., & Niknam, L. (2022). Application electrochemical sensor based on nanosheets G-C3N4/CPE by square-wave anodic stripping voltammetric for measuring amounts of toxic tartrazine color residual in different drink and foodstuffs. Journal of Environmental Science and Health, Part B, 57(6), 457–467. https://doi.org/10.1080/03601234.2022.2064676

Assoc. Prof. Dr. Farzaneh Bayat | Best Researcher Award

Assoc. Prof. Dr. Farzaneh Bayat | Best Researcher Award

Azarbaijan Shahid Madani University | Iran

Dr. Farzaneh Bayat is an accomplished Associate Professor of Physics at Azarbaijan Shahid Madani University, Iran. She earned her Ph.D. in Physics from the same institution in 2016, specializing in photonic crystals and nanophotonics. With a distinguished research trajectory that includes visiting scientist positions at the Instituto de Ciencia de Materiales de Madrid, Spain, and the University of Heidelberg BioQuant Center, Germany, Dr. Bayat has made significant contributions to the fields of photonic crystal-based sensors, plasmonic nanostructures, and optical materials. Her research spans nano- and micro-structured materials, quantum dot-sensitized solar cells, and photocatalytic nanocomposites. She has authored 37 scientific publications, garnering over 248 citations and maintaining an h-index of 10, reflecting the global impact of her work. Her studies on photonic biosensors, colloidal lithography, and plasmon-enhanced photocatalysis have advanced the design of next-generation optical sensors and solar energy devices. Dr. Bayat’s international collaborations and innovative work in nanophotonics have earned her recognition as a leading figure in optical materials science. Through her interdisciplinary approach, she continues to bridge physics, materials science, and nanotechnology to address challenges in sustainable energy and biomedical diagnostics.

Profiles : Google Scholar | Orcid | Scopus

Featured Publications

Amani-Ghadim, A. R., Mousavi, M., & Bayat, F. (2022). Dysprosium doping in CdTe@CdS type II core/shell and cosensitizing with CdSe for photocurrent and efficiency enhancement in quantum dot sensitized solar cells. Journal of Power Sources, 539, 231624. https://doi.org/10.1016/j.jpowsour.2022.231624

Pourasl, M. H., Vahedi, A., Tajalli, H., Khalilzadeh, B., & Bayat, F. (2023). Liquid crystal-assisted optical biosensor for early-stage diagnosis of mammary glands using HER-2. Scientific Reports, 13(1), 6847. https://doi.org/10.1038/s41598-023-33814-4

Khodam, F., Amani-Ghadim, A. R., Ashan, N. N., Sareshkeh, A. T., Bayat, F., & Gholinejad, M. (2022). CdTe quantum dots incorporated in CoNiAl layered double hydroxide interlayer spaces as a highly efficient visible light-driven photocatalyst for degradation of an azo dye and Bisphenol A. Journal of Alloys and Compounds, 898, 162768. https://doi.org/10.1016/j.jallcom.2021.162768

Bayat, F., Ahmadi-Kandjani, S., & Tajalli, H. (2016). Designing real-time biosensors and chemical sensors based on defective one-dimensional photonic crystals. IEEE Photonics Technology Letters, 28(17), 1843–1846. https://doi.org/10.1109/LPT.2016.2570664

Adl, H. P., Bayat, F., Ghorani, N., Ahmadi-Kandjani, S., & Tajalli, H. (2017). A defective one-dimensional photonic crystal-based chemical sensor in total internal reflection geometry. IEEE Sensors Journal, 17(13), 4046–4051. https://doi.org/10.1109/JSEN.2017.2701090

Mr. Weijiang Xu | Best Researcher Award

Mr. Weijiang Xu | Best Researcher Award

Guilin University of Electronic Technology | China

Dr. Weijiang Xu is a Lecturer at the School of Optoelectronic Engineering, Guilin University of Electronic Technology. He earned his Doctor of Science (2024) and Master of Science (2018) in Physics from Harbin Institute of Technology, following his Bachelor’s degree from Lingnan Normal University in 2016. His research centers on optical fiber sensors, quantum dot photonics, and upconversion luminescence for multifunctional sensing applications. Dr. Xu has authored 17 scientific documents with over 120 citations and maintains an h-index of 8, reflecting his growing influence in the field of optical materials and photonic sensing. His representative works, published in leading journals such as Optics Express, Optics Letters, Journal of Lightwave Technology, and Optics Communications, explore innovative fiber-based devices for temperature, curvature, and flow sensing. He has also contributed to the development of several patented optical fiber sensing technologies in China. Dr. Xu’s recent advancements include bubble-tunable and calibration-free optical fiber sensors employing quantum dots-filled liquid cores. His research continues to bridge nanomaterials with optical engineering for advanced environmental and biomedical sensing. With a record of impactful publications and technological innovation, Dr. Xu is emerging as a promising scholar in the field of optoelectronic sensing.

Profile :  Scopus 

Featured Publications

Xu, W., Li, Y., Shang, J., Wang, Y., Hou, L., Liu, Y., & Qu, S. (2022). Optical fiber sensor based on upconversion luminescence for synchronous temperature and curvature sensing. Optics Express, 30(18), 33136–33136.

Xu, W., Qu, J., Liu, Y., Bai, J., Li, Y., & Qu, S. (2023). Optical fiber inclinometer with dynamically controllable excitation length of quantum dots liquid-core waveguide based on a photo-controlled bubble. Optics Letters, 48(6), 1403–1406.

Xu, W., Qu, J., Liu, Y., Bai, J., Li, Y., & Qu, S. (2023). A calibration-free fiber sensor based on CdZnSe/ZnSe/ZnS quantum dots for real-time monitoring of human thermal activities. Measurement, 206, 112315.

Xu, W., Liu, Y., Li, Y., & Qu, S. (2024). Horizontal clinometer based on a movable bubble in the arc-shaped quantum dots liquid cavity. Journal of Lightwave Technology, 42(6), 2193–2199.

Qu, J., Zhang, Y., Ling, M., & Xu, W.* (2025). Heat-typed fiber liquid flow sensor with wide sensing range and high sensitivity. Journal of Lightwave Technology, 43(1), 369–375.