Mr. Harish Verma | Best Researcher Award
Indian Institute of Technology (Banaras Hindu University) Varanasi | India
Dr. Harish Verma holds a B.Sc (UG), B.Ed, M.Sc (PG), and M.Phil in Physics and has qualified the CSIR-NET JRF examination. He is currently pursuing a Ph.D. in energy storage, dielectric materials, density functional theory (DFT), artificial intelligence (AI), and machine learning (ML) at the Indian Institute of Technology (BHU), Varanasi. His research focuses on the synthesis and characterization of advanced functional materials such as oxide perovskites, spinels, and graphene-based nanocomposites for dielectric and electrochemical energy storage applications. Dr. Verma integrates computational DFT analysis with AI- and ML-assisted materials modeling to accelerate the design and optimization of high-performance materials. His recent works include studies on dielectric and conductivity behavior of SrCeO₃, Ru-doped CNT/graphene-oxide supercapacitors, and MgAl₀.₅Fe₁.₅O₄ spinel ferrite systems. With over 20 scientific publications, an h-index of 6, and more than 90 citations, he has contributed significantly to understanding charge transport, dielectric relaxation, and structure–property relationships in multifunctional ceramics. His research aims to bridge experimental materials science and computational intelligence for developing sustainable, next-generation energy storage technologies and smart functional materials with enhanced performance and stability.
Profile : Google Scholar
Featured Publications
Verma, H., Tripathi, A., & Upadhyay, S. (2024). A comprehensive study of dielectric, modulus, impedance, and conductivity of SrCeO₃ synthesized by the combustion method. International Journal of Applied Ceramic Technology, 21(4), 3032–3047.
Verma, S., Das, T., Verma, S., Pandey, V. K., Pandey, S. K., Verma, H., & Verma, B. (2025). Hierarchically architecture of Ru-doped multichannel carbon nanotubes embedded with graphene oxide for supercapacitor material with long-term cyclic stability. Fuel, 381, 133517.
Verma, S., Maurya, A., Verma, H., Singh, R., & Bhoi, B. (2024). Unveiling the characteristics of MgAl₀.₅Fe₁.₅O₄ spinel ferrite: A study of structural, optical, and dielectric properties. Chemical Physics Impact, 9, 100674.
Nirala, G., Katheriya, T., Yadav, D., Verma, H., & Upadhyay, S. (2023). The evolution of coil-less inductive behaviour in La-doped Sr₂MnO₄. Emergent Materials, 6(6), 1951–1962.
Verma, H., Kumar, P., Satyarthi, S. K., Bhattacharya, B., Singh, A. K., & Upadhyay, S. (2025). Investigation of La₂FeO₄–rGO nanocomposite electrode material for symmetric and asymmetric supercapacitor. Journal of Energy Storage, 114, 115849.