Assoc. Prof. Dr. Jonas Duarte | Top Applied Physicist Award

Assoc. Prof. Dr. Jonas Duarte | Top Applied Physicist Award

Federal University Western of Pará | Brazil

Dr. Jonas Marinho Duarte earned both a Licenciatura and a Bachelor’s degree in Physics from the Federal University of Pará (UFPA), followed by an M.Sc. (2019–2021) and a Ph.D. (2021–2025) in Electrical Engineering from the same institution. Since July 2025, he has served as a Professor in the Faculty of Mining Engineering at the Federal University of Western Pará (UFOPA) in Santarém, Brazil. His research focuses on two-dimensional carbon allotropes, nanoelectronics and electronic transport modulation, terahertz and microstrip antenna design using novel graphene-like patch resonators, and active learning methodologies in solar-energy education and environmental outreach. He has published peer-reviewed articles in journals such as Optical & Quantum Electronics, Physica E, and Computational Condensed Matter. Jonas Duarte’s current (unverified) research metrics include an h-index of approximately 0, around 5 published documents, and about 2 citations. He is developing a strong early-career, multidisciplinary profile that bridges physics, electrical engineering, and materials science through both teaching and research. In summary, Jonas Duarte is an emerging scholar-educator who actively connects advanced materials modeling with device engineering, positioning himself for significant future impact.

Profile : Orcid 

Featured Publications

Cardoso, D. H., Miranda, I. R. S., Mota, E. A. V., Duarte, J. M., dos Santos da Silva, S. J., da Silva, C. A. B., & Del Nero, J. (2025). Numerical implementation of phagraphene as patch resonator for a microstrip antenna. Optical and Quantum Electronics, 57(84), Article 08404. https://doi.org/10.1007/s11082-025-08404-9

Quaresma, L. C., Ferreira, D. F. S., Duarte, J. M., Moreira, M. M., da Silva, C. A. B. Jr., & Del Nero, J. (2025, December). Eigenchannel visualization and transition-voltage spectroscopy in two-dimensional C57 allotrope. Computational Condensed Matter, 36, e01169. https://doi.org/10.1016/j.cocom.2025.e01169

Quaresma, L. C., Duarte, J. M., Ferreira, D. F. S., da Silva, C. A. B. Jr., & Del Nero, J. (2025, October). Electronic transport modulation in C57: A path toward carbon-based logic and switching devices. Physica E: Low-Dimensional Systems and Nanostructures, 163, 116340. https://doi.org/10.1016/j.physe.2025.116340

Duarte, J. M., Santos, J. C. S., Ferreira, D. F. S., Paula, M. V. S., Mota, E. A. V., da Silva, C. A. B., & Del Nero, J. (2025, March). Systematic investigation of a metallic quadrilateral nanoribbon graphene allotrope for application in nanoelectronics. Computational Condensed Matter, 34, e01007. https://doi.org/10.1016/j.cocom.2025.e01007

Duarte, J. M. (2024, November). Metodologias ativas e educação ambiental: Uma revisão integrativa sobre abordagens inovadoras para o ensino de energia solar. Ensino e Tecnologia em Revista, 18(4), 1–15.

Assoc. Prof. Dr. Farzaneh Bayat | Best Researcher Award

Assoc. Prof. Dr. Farzaneh Bayat | Best Researcher Award

Azarbaijan Shahid Madani University | Iran

Dr. Farzaneh Bayat is an accomplished Associate Professor of Physics at Azarbaijan Shahid Madani University, Iran. She earned her Ph.D. in Physics from the same institution in 2016, specializing in photonic crystals and nanophotonics. With a distinguished research trajectory that includes visiting scientist positions at the Instituto de Ciencia de Materiales de Madrid, Spain, and the University of Heidelberg BioQuant Center, Germany, Dr. Bayat has made significant contributions to the fields of photonic crystal-based sensors, plasmonic nanostructures, and optical materials. Her research spans nano- and micro-structured materials, quantum dot-sensitized solar cells, and photocatalytic nanocomposites. She has authored 37 scientific publications, garnering over 248 citations and maintaining an h-index of 10, reflecting the global impact of her work. Her studies on photonic biosensors, colloidal lithography, and plasmon-enhanced photocatalysis have advanced the design of next-generation optical sensors and solar energy devices. Dr. Bayat’s international collaborations and innovative work in nanophotonics have earned her recognition as a leading figure in optical materials science. Through her interdisciplinary approach, she continues to bridge physics, materials science, and nanotechnology to address challenges in sustainable energy and biomedical diagnostics.

Profiles : Google Scholar | Orcid | Scopus

Featured Publications

Amani-Ghadim, A. R., Mousavi, M., & Bayat, F. (2022). Dysprosium doping in CdTe@CdS type II core/shell and cosensitizing with CdSe for photocurrent and efficiency enhancement in quantum dot sensitized solar cells. Journal of Power Sources, 539, 231624. https://doi.org/10.1016/j.jpowsour.2022.231624

Pourasl, M. H., Vahedi, A., Tajalli, H., Khalilzadeh, B., & Bayat, F. (2023). Liquid crystal-assisted optical biosensor for early-stage diagnosis of mammary glands using HER-2. Scientific Reports, 13(1), 6847. https://doi.org/10.1038/s41598-023-33814-4

Khodam, F., Amani-Ghadim, A. R., Ashan, N. N., Sareshkeh, A. T., Bayat, F., & Gholinejad, M. (2022). CdTe quantum dots incorporated in CoNiAl layered double hydroxide interlayer spaces as a highly efficient visible light-driven photocatalyst for degradation of an azo dye and Bisphenol A. Journal of Alloys and Compounds, 898, 162768. https://doi.org/10.1016/j.jallcom.2021.162768

Bayat, F., Ahmadi-Kandjani, S., & Tajalli, H. (2016). Designing real-time biosensors and chemical sensors based on defective one-dimensional photonic crystals. IEEE Photonics Technology Letters, 28(17), 1843–1846. https://doi.org/10.1109/LPT.2016.2570664

Adl, H. P., Bayat, F., Ghorani, N., Ahmadi-Kandjani, S., & Tajalli, H. (2017). A defective one-dimensional photonic crystal-based chemical sensor in total internal reflection geometry. IEEE Sensors Journal, 17(13), 4046–4051. https://doi.org/10.1109/JSEN.2017.2701090