Prof. Kazem Jamshidi-Ghale | Best Researcher Award

Prof. Kazem Jamshidi-Ghale | Best Researcher Award

Azarbaijan Shahid Madani University | Iran

Prof. Kazem Jamshidi-Ghaleh is a distinguished physicist at the Department of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran, with extensive experience in optics, photonics, and nonlinear optical phenomena. He holds a Ph.D. in Physics and has contributed over 50 peer-reviewed publications, accumulating more than 800 citations and an h-index of 19, reflecting his influential research in laser-matter interaction, nonlinear refraction, optical limiting, photonic crystals, and nanostructured thin films. Dr. Jamshidi-Ghaleh’s work spans experimental and theoretical studies on optical bistability, ultrafast laser processing, femtosecond laser interactions with materials, and the optical characterization of nanocomposites and dye molecules. He has led several projects on electrically tunable photonic devices and advanced optical measurement techniques such as moiré deflectometry. His research has been recognized in international journals including Optics Communications, Applied Physics A, and The European Physical Journal D. In addition to his research, he has mentored graduate students and collaborated with multidisciplinary teams on photonic materials and nanostructure applications. Dr. Jamshidi-Ghaleh continues to advance the field of photonics, contributing both fundamental insights and practical applications in optical materials and devices. His achievements highlight his commitment to scientific innovation, education, and the development of photonic technologies.

Profile : Google Scholar

Featured Publications

Jamshidi-Ghaleh, K., Salmani, S., & Ara, M. H. M. (2007). Nonlinear responses and optical limiting behavior of fast green FCF dye under a low power CW He–Ne laser irradiation. Optics Communications, 271(2), 551–554. https://doi.org/10.1016/j.optcom.2007.01.003

Tohidi, T., Jamshidi-Ghaleh, K., Namdar, A., & Abdi-Ghaleh, R. (2014). Comparative studies on the structural, morphological, optical, and electrical properties of nanocrystalline PbS thin films grown by chemical bath deposition using two different … Materials Science in Semiconductor Processing, 25, 197–206. https://doi.org/10.1016/j.mssp.2014.04.003

Jamshidi-Ghaleh, K., & Mansour, N. (2004). Nonlinear refraction measurements of materials using the moiré deflectometry. Optics Communications, 234(1–6), 419–425. https://doi.org/10.1016/j.optcom.2004.01.057

Mansour, N., Jamshidi-Ghaleh, K., & Ashkenasi, D. (2006). Formation of conical microstructures of silicon with picosecond laser pulses in air. Journal of Laser Micro/Nanoengineering, 1, 10.2961. https://doi.org/10.2961/jlmn.2006.1.10

Mohammad-Jafarieh, P., Akbarzadeh, A., Salamat-Ahangari, R., … Jamshidi-Ghaleh, K. (2021). Solvent effect on the absorption and emission spectra of carbon dots: Evaluation of ground and excited state dipole moment. BMC Chemistry, 15(1), 53. https://doi.org/10.1186/s13065-021-00789-1

Dr. Shyamal Mondal | Best Research Article Award

Dr. Shyamal Mondal | Best Research Article Award

Defence Institute of Advanced Technology | India

Shyamal Mondal is a leading researcher with an h-index of 9, 58 publications, and 293 citations across 235 documents, demonstrating significant contributions in photonics, terahertz technologies, and ultrafast optics. He earned his Ph.D. in Physics and Meteorology from the Indian Institute of Technology Kharagpur and is currently a faculty member at SRM Institute of Science and Technology, Kattankulathur, India. His research focuses on terahertz imaging and antenna design, deep learning for image enhancement, nonlinear optical phenomena, ultrafast fiber lasers, and advanced materials such as carbon nanostructures and MXenes. Dr. Mondal has advanced interdigitated photoconductive antennas, coherent mid-infrared laser sources, and modelocked fiber lasers, integrating theoretical and experimental approaches. He has published in high-impact journals including ACS Applied Optical Materials, Optics Express, and Journal of Applied Physics, and presented his work at international conferences. His contributions have strengthened the fields of terahertz communications, optical nonlinearity, and laser technologies. Dr. Mondal continues to drive innovation, mentoring emerging researchers, and bridging fundamental science with applied photonics solutions, thereby expanding the frontiers of optical and terahertz research.

Profiles : Google Scholar | Orcid | Scopus | Research Gate

Featured Publications

Mondal, S., Jampani, K., Raj, A. R., Roy Chowdhury, D., & Sethi, A. (2025). Implementing W-Net deep learning for terahertz image enhancement and segmentation. Engineering Research Express.

Mondal, S., Raj, A. R., & Saha, S. (2024). Advancements in the use of artificial saturable absorbers for modelocking of 2 µm ultrafast fiber lasers. Annalen der Physik.

Rathinasamy, V., Thipparaju, R. R., Boby, E. N. F., & Mondal, S. (2022). Interdigitated photoconductive antenna for future wireless communications. Microwave and Optical Technology Letters, 64(12), 2189–2196.

Boby, E. N. F., Prajapati, J., Rathinasamy, V., Mukherjee, S., & Mondal, S. (2022). Parametric investigation of interdigitated photoconductive antenna for efficient terahertz applications. Arabian Journal for Science and Engineering, 47(3), 3597–3609.

Mitra, N., Patra, A. K., Singh, S. P., Mondal, S., Datta, P. K., & Varshney, S. K. (2020). Interfacial delamination in glass-fiber/polymer-foam-core sandwich composites using singlemode–multimode–singlemode optical fiber sensors: Identification based on experimental investigation. Journal of Sandwich Structures and Materials.

Mondal, S., Mukherjee, S., Singh, S. P., Rand, S. C., Bhattacharya, S., Das, A. C., & Datta, P. K. (2016). Dynamic gain aperture modelocking in picosecond regime based on cascaded second-order nonlinearity. Optics Express, 24(15), 15274–15285.