Prof. Morteza Vahedpour | Best Researcher Award

Prof. Morteza Vahedpour | Best Researcher Award

University of Zanjan | Iran

Dr. Morteza Vahedpour is a prominent Iranian physical chemist and computational researcher, serving as a faculty member in the Department of Chemistry at the University of Zanjan. He earned his Ph.D. in Physical Chemistry from Isfahan University of Technology, specializing in statistical thermodynamics and viscosity relaxation in molecular fluids, following his M.Sc. in computational physical chemistry from Shiraz University. With over 70 peer-reviewed publications, an h-index of 19, more than 1,000 citations, and over 80 research documents, Dr. Vahedpour is widely recognized for his contributions to computational and theoretical chemistry. His research spans reaction kinetics, atmospheric chemistry, acid rain formation mechanisms, DFT calculations, molecular modeling, and the computational design of drug delivery nanoparticles. He has co-authored influential studies on transition metal complexes, polycyclic aromatic hydrocarbons, and mechanistic pathways of key atmospheric reactions. Dr. Vahedpour’s work integrates theory with practical applications, offering insights into catalysis, environmental remediation, and sustainable chemical processes. His dedication to advancing fundamental and applied research continues to inspire young scientists and contributes to the global understanding of chemical reaction mechanisms, green chemistry innovations, and the development of computational methods for solving complex problems in modern chemistry.

Profile : Google Scholar

Featured Publications

Vahedpour, M., Rostamizadeh, K., & Bozorgi, S. (2012). Synthesis, characterization and evaluation of computationally designed nanoparticles of molecular imprinted polymers as drug delivery systems. International Journal of Pharmaceutics, 424(1–2), 67–75.

Monfared, H. H., Vahedpour, M., Yeganeh, M. M., Ghorbanloo, M., & Mayer, P. (2011). Concentration dependent tautomerism in green [Cu(HL1)(L2)] and brown [Cu(L1)(HL2)] with H2L1=(E)-N′-(2-hydroxy-3-methoxybenzylidene) benzoylhydrazone and HL2. Dalton Transactions, 40(6), 1286–1294.

Monfared, H. H., Alavi, S., Bikas, R., Vahedpour, M., & Mayer, P. (2010). Vanadiumoxo–aroylhydrazone complexes: Synthesis, structure and DFT calculations. Polyhedron, 29(18), 3355–3362.

Moghaddam, S. K., Rasoulifard, M., Vahedpour, M., & Eskandarian, M. (2014). Removal of tylosin from aqueous solution by UV/nano Ag/S2O8²− process: Influence of operational parameters and kinetic study. Korean Journal of Chemical Engineering, 31(9), 1577–1581.

Nayebzadeh, M., Vahedpour, M., & Rius-Bartra, J. M. (2020). Kinetics and oxidation mechanism of pyrene initiated by hydroxyl radical: A theoretical investigation. Chemical Physics, 528, 110522.

Vahedpour, M., & Zolfaghari, F. (2011). Mechanistic study on the atmospheric formation of acid rain based on the sulfur dioxide. Structural Chemistry, 22(6), 1331–1338.

Dr. Zhisong Ou | Best Researcher Award

Dr. Zhisong Ou | Best Researcher Award

Institute of Rock and Soil Mechanics, Chinese Academy of Sciences | China

Dr. Zhisong Ou is an Assistant Researcher at the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, specializing in environmental geotechnical mechanics, multiphase flow dynamics, and thermo-hydro-mechanical-chemical (THMC) coupling processes. He earned his Ph.D. in geotechnical engineering and has gained extensive experience in computational modeling and experimental studies of flow and transport in porous media. Dr. Ou has authored 24 peer-reviewed publications, received 521 citations, and holds an h-index of 13, reflecting his impactful research contributions. His work focuses on advancing high-fidelity reacting immersed boundary methods, unified fluid–solid dynamics theories, and efficient one-field multiscale multiphysics models that enhance the understanding of coupled processes in geotechnical and environmental systems. As project leader for the National Natural Science Foundation of China Youth Fund and the CAS Special Research Assistant Project, he has led innovative research on contaminated site remediation, waste treatment, and sustainable infrastructure solutions. In addition, he serves on the Young Editorial Board of ICEST, contributing to the dissemination of knowledge in his field. Dr. Ou’s combination of theoretical insights, advanced modeling approaches, and problem-oriented research positions him as a rising research leader with strong potential to drive breakthroughs in environmental geotechnics and sustainable engineering.

Profile : Scopus

Featured Publications

Ou, Z., et al. (2025). Modeling and simulation of steam-enhanced extraction: Parameter effect of injected steam–air mixture on NAPL remediation at contaminated sites. Journal of Hazardous Materials.

Ou, Z., et al. (2025). A monolithic fluid–structure interaction approach for multiscale flows with deformable porous media. Physics of Fluids.

Ou, Z., et al. (2024). High-fidelity reacting immersed boundary method for interface-scale resolving simulations in porous media. Journal of Computational Physics.

Ou, Z., et al. (2023). Thermo-hydro-mechanical-chemical coupling analysis for waste containment barriers. Computers and Geotechnics.

Ou, Z., et al. (2022). Multiscale modeling of heat and mass transport in variably saturated soils under thermal gradients. International Journal of Heat and Mass Transfer.

Dr. Kousik Bera | Best Paper Award

Dr. Kousik Bera | Best Paper Award

Indian Institute of Technology Bombay | India

Dr. Kousik Bera is a research scholar at the Indian Institute of Technology Bombay, specializing in condensed matter physics, quantum materials, and spectroscopic techniques. He has authored 11 peer-reviewed publications, achieving over 45 citations with an h-index of 4, reflecting the quality and influence of his research. His work integrates Raman spectroscopy, ultrafast nonlinear optics, and quantum photonics to address key challenges in material science and quantum technology. Dr. Bera’s studies on wafer-scale hexagonal boron nitride (hBN) films have provided critical insights into the role of defects, wrinkles, and impurities in thermal transport, with implications for next-generation nanoelectronic devices. He has also contributed to the development of polarization-entangled photon sources using type-0 PPKTP crystals, advancing quantum communication and cryptography. His collaborative publications in Physical Review B, Journal of Applied Physics, Nanotechnology, Optical Materials, and Optics Communications highlight his multidisciplinary approach. With strong expertise in 2D materials, superconductivity, and quantum criticality, Dr. Bera’s research is paving the way for breakthroughs in photonic devices and quantum technologies. His academic productivity and impactful contributions make him a promising candidate for recognition and awards in physics and materials research.

Profile : Orcid

Featured Publications

Bright source of degenerate polarization-entangled photons using type-0 PPKTP crystal: Effects of accidental coincidences
Optics Communications, 2025 – Demonstrated a high-brightness entangled photon source, relevant for quantum communication and cryptography.

Surface-enhanced Raman scattering-based sensing and ultrafast nonlinear optical properties of silver–hexagonal boron nitride nanocomposites achieved by femtosecond laser ablation
Optical Materials, 2024 – Reported novel nanocomposites with enhanced SERS activity and nonlinear optical response for sensing applications.

Nanostructured bi-metallic Pd–Ag alloy films for surface-enhanced Raman spectroscopy-based sensing application
Journal of Vacuum Science & Technology A, 2024 – Developed bimetallic alloy films for ultrasensitive SERS-based detection.

Decoupling the roles of defects/impurities and wrinkles in thermal conductivity of wafer-scale hBN films
Journal of Applied Physics, 2023 – Provided critical insights into thermal transport mechanisms in large-area hBN films.

Surface-phase superconductivity in a Mg-deficient V-doped MgTi₂O₄ spinel
Physical Review B, 2023 – Investigated unconventional superconductivity and surface effects in spinel oxides.