Assist. Prof. Dr. Bhuvneshwer Suthar | Best Researcher Award

Assist. Prof. Dr. Bhuvneshwer Suthar | Best Researcher Award

Government Dungar College, Bikaner | India

Dr. Bhuvneshwer Suthar is a distinguished physicist known for his impactful contributions to photonic crystals, optical sensors, photonic switching technologies, and advanced metamaterial-based devices. With an impressive research record comprising 110 documents, an h-index of 29, and more than 1,713 citations, he has established a strong scholarly presence in computational photonics and optical engineering. He holds advanced academic qualifications in physics and has accumulated extensive teaching and research experience as an active academic and scientist. His research interests span one-dimensional and two-dimensional photonic crystals, optical filters, biosensing mechanisms, temperature sensors, terahertz photonics, and waveguide-integrated photonic devices. Dr. Suthar’s work has led to notable advancements in ultra-compact optical components, defect-mode engineering, and high-sensitivity biosensors for biomedical and environmental applications. He has collaborated widely and contributed to several international conferences and editorial activities within the photonics community. His achievements include recognition for high-quality research outputs and influential publications that continue to support innovations in photonic device design. In conclusion, Dr. Suthar stands as a highly productive researcher whose scientific contributions significantly advance modern photonic technologies and inspire continued progress in optical sensing and photonic crystal engineering.

Profiles : Google ScholarScopus

Featured Publications

Ankita, & Suthar, B., & Bhargava, A. (2021). Biosensor application of one-dimensional photonic crystal for malaria diagnosis. Plasmonics, 16(1), 59–63.

Kumar, N., & Suthar, B. (2019). Advances in photonic crystals and devices. CRC Press.

Radhouene, M., Chhipa, M. K., Najjar, M., Robinson, S., & Suthar, B. (2017). Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sensors, 7(4), 311–316.

Gharsallah, Z., Najjar, M., Suthar, B., & Janyani, V. (2018). High sensitivity and ultra-compact optical biosensor for detection of urea concentration. Optical and Quantum Electronics, 50(6), 249.

Suthar, B., & Bhargava, A. (2021). Pressure sensor based on quantum well-structured photonic crystal. Silicon, 13(6), 1765–1768.

Assoc. Prof. Dr. Farzaneh Bayat | Best Researcher Award

Assoc. Prof. Dr. Farzaneh Bayat | Best Researcher Award

Azarbaijan Shahid Madani University | Iran

Dr. Farzaneh Bayat is an accomplished Associate Professor of Physics at Azarbaijan Shahid Madani University, Iran. She earned her Ph.D. in Physics from the same institution in 2016, specializing in photonic crystals and nanophotonics. With a distinguished research trajectory that includes visiting scientist positions at the Instituto de Ciencia de Materiales de Madrid, Spain, and the University of Heidelberg BioQuant Center, Germany, Dr. Bayat has made significant contributions to the fields of photonic crystal-based sensors, plasmonic nanostructures, and optical materials. Her research spans nano- and micro-structured materials, quantum dot-sensitized solar cells, and photocatalytic nanocomposites. She has authored 37 scientific publications, garnering over 248 citations and maintaining an h-index of 10, reflecting the global impact of her work. Her studies on photonic biosensors, colloidal lithography, and plasmon-enhanced photocatalysis have advanced the design of next-generation optical sensors and solar energy devices. Dr. Bayat’s international collaborations and innovative work in nanophotonics have earned her recognition as a leading figure in optical materials science. Through her interdisciplinary approach, she continues to bridge physics, materials science, and nanotechnology to address challenges in sustainable energy and biomedical diagnostics.

Profiles : Google Scholar | Orcid | Scopus

Featured Publications

Amani-Ghadim, A. R., Mousavi, M., & Bayat, F. (2022). Dysprosium doping in CdTe@CdS type II core/shell and cosensitizing with CdSe for photocurrent and efficiency enhancement in quantum dot sensitized solar cells. Journal of Power Sources, 539, 231624. https://doi.org/10.1016/j.jpowsour.2022.231624

Pourasl, M. H., Vahedi, A., Tajalli, H., Khalilzadeh, B., & Bayat, F. (2023). Liquid crystal-assisted optical biosensor for early-stage diagnosis of mammary glands using HER-2. Scientific Reports, 13(1), 6847. https://doi.org/10.1038/s41598-023-33814-4

Khodam, F., Amani-Ghadim, A. R., Ashan, N. N., Sareshkeh, A. T., Bayat, F., & Gholinejad, M. (2022). CdTe quantum dots incorporated in CoNiAl layered double hydroxide interlayer spaces as a highly efficient visible light-driven photocatalyst for degradation of an azo dye and Bisphenol A. Journal of Alloys and Compounds, 898, 162768. https://doi.org/10.1016/j.jallcom.2021.162768

Bayat, F., Ahmadi-Kandjani, S., & Tajalli, H. (2016). Designing real-time biosensors and chemical sensors based on defective one-dimensional photonic crystals. IEEE Photonics Technology Letters, 28(17), 1843–1846. https://doi.org/10.1109/LPT.2016.2570664

Adl, H. P., Bayat, F., Ghorani, N., Ahmadi-Kandjani, S., & Tajalli, H. (2017). A defective one-dimensional photonic crystal-based chemical sensor in total internal reflection geometry. IEEE Sensors Journal, 17(13), 4046–4051. https://doi.org/10.1109/JSEN.2017.2701090

Dr. Rokhsareh Abedi | Best Researcher Award

Dr. Rokhsareh Abedi | Best Researcher Award

Lorestan University | Iran

Dr. Rokhsareh Abedi is a distinguished researcher in analytical chemistry with a Ph.D. in Electrochemistry from the University of Mazandaran, Iran. Her academic journey also includes an M.Sc. in Chemistry from the same institution and a B.Sc. in Pure Chemistry from Hakim Sabzevari University. With an impressive record of 11 publications, 135 citations, and an h-index of 9, Dr. Abedi has made significant contributions to the development of electrochemical biosensors and nanomaterial-based sensing systems. Her research primarily focuses on electrochemistry, biosensors, bacterial detection, and nanostructured materials for biomedical and environmental applications. She has developed innovative aptasensors and genosensors for the highly sensitive detection of pathogenic bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii. Dr. Abedi’s recent work on advanced nanocomposites and ultrathin nanosheets demonstrates her expertise in surface engineering and electrochemical catalysis for energy and sustainability. Her publications in reputed journals such as Bioelectrochemistry, Analytica Chimica Acta, Advanced Sustainable Systems, and Journal of Power Sources highlight her scientific excellence. Through her research and collaborations, Dr. Abedi continues to advance the field of electrochemical sensing and nanomaterial science, contributing to global efforts in healthcare diagnostics and clean energy innovations.

Profiles : Google Scholar | Orcid | Scopus

Featured Publications

Abedi, R., Darband, G. B. (2025). Interfacial surface engineering of Co–Mn–P ultrathin nanosheets on Ni–Co hierarchical nanostructure for boosting electrochemical active sites in overall water splitting. Journal of Power Sources, 641, 236840. https://doi.org/10.1016/j.jpowsour.2025.236840

Parsafard, N., Abedi, R., & Moodi, H. (2024). Ternary tin-doped titanium dioxide/calcium oxide (Sn–TiO₂/CaO) composite as a photocatalyst for efficient removal of toxic dyes. RSC Advances, 14(28), 19984–19995. https://doi.org/10.1039/d4ra03641g

Abedi, R., & Darband, G. B. (2024). Science and engineering of superaerophobic surfaces for electrochemical gas-evolving reactions: A review of recent advances and perspective. Advanced Sustainable Systems. https://doi.org/10.1002/adsu.202400465

Abedi, R., Raoof, J. B., Mohseni, M., & Hashkavayi, A. B. (2024). Sandwich-type electrochemical aptasensor based on hemin-graphite oxide as a signal label and rGO/MWCNTs/chitosan/carbon quantum dot modified electrode for sensitive detection of Acinetobacter baumannii bacteria. Analytica Chimica Acta, 1259, 342491. https://doi.org/10.1016/j.aca.2024.342491

Abedi, R., Raoof, J. B., Mohseni, M., & Hashkavayi, A. B. (2023). Sandwich-type electrochemical aptasensor for highly sensitive and selective detection of Pseudomonas aeruginosa bacteria using a dual signal amplification strategy. Bioelectrochemistry, 150, 108332. https://doi.org/10.1016/j.bioelechem.2022.108332