Prof. Adel Asheri | Best Researcher Award

Prof. Adel Asheri | Best Researcher Award

National Research Centre | Egypt

Professor Adel Ashery is a distinguished physicist and head of the Department of Solid State Physics at the National Research Center (NRC), Cairo, Egypt. He earned his Ph.D. in Physics from the Leningrad Institute of Electronic Engineering (Russia) in 1990, following a B.Sc. in Physics from Cairo University (1982) and a Science Diploma from Russia (1987). With an extensive academic and research career, Professor Ashery has made significant contributions to the fields of solid-state physics, semiconductor devices, and thin-film technology. His research primarily focuses on the preparation and characterization of single-crystal devices and thin films using advanced techniques such as liquid phase epitaxy, electrochemical ionization, sol-gel methods, photolithography, and chemical vapor deposition. He has authored over 89 scientific publications, accumulating 996 citations and an h-index of 17, demonstrating his impactful scholarship. His recent works explore interfacial engineering, dielectric tunability, and optoelectronic properties of novel heterojunction structures, contributing to advancements in resistive memory, RRAM, and high-κ electronics. Professor Ashery’s dedication to experimental innovation and material development has positioned him as a leading researcher in condensed matter and electronic materials science, continuing to inspire progress in semiconductor device engineering.

Profiles :  Scopus | Orcid

Featured Publications

Ashery, A. (2025). Interfacial engineering and dielectric tunability in Ag/Al/SiO₂/n-Si/Ag heterostructures: Novel insights for resistive memory and high-κ electronics. Physica B: Condensed Matter, 417758.

Ashery, A. (2025). Ag/MWCNTs-PVA composite/n-Si/Ag exhibits a novel combination of high electrical conductance and tunable capacitance in magnitude and sign. ECS Journal of Solid State Science and Technology.

Ashery, A., Gaballah, A. E. H., Elmoghazy, E., & Kabatas, M. A. B. M. (2025). Investigation of the optoelectronic properties of a novel polypyrrole–multi-well carbon nanotubes/titanium oxide/aluminum oxide/p-silicon heterojunction. Nanotechnology Reviews, 14(1), 20250174.

Ashery, A., Gaballah, A. E. H., Elnasharty, M. M. M., & Kabatas, M. A. B. M. (2024). Dielectric properties of epitaxially grown lattice-mismatched GaAs/p-Si heterojunction diode. iScience, 27(9).

Ashery, A., Gaballah, A. E. H., Turky, G. M., & Basyooni-Murat Kabatas, M. A. (2024). Gel-based PVA/SiO₂/p-Si heterojunction for electronic device applications. Gels, 10(8), 537.

Ashery, A., Gaballah, A. E. H., & Farag, A. A. M. (2024). Optical characterization of high-quality spin-coated PVA nanostructured films for photo-sensing application. Physica B: Condensed Matter, 687, 416088.

Dr. Kousik Bera | Best Paper Award

Dr. Kousik Bera | Best Paper Award

Indian Institute of Technology Bombay | India

Dr. Kousik Bera is a research scholar at the Indian Institute of Technology Bombay, specializing in condensed matter physics, quantum materials, and spectroscopic techniques. He has authored 11 peer-reviewed publications, achieving over 45 citations with an h-index of 4, reflecting the quality and influence of his research. His work integrates Raman spectroscopy, ultrafast nonlinear optics, and quantum photonics to address key challenges in material science and quantum technology. Dr. Bera’s studies on wafer-scale hexagonal boron nitride (hBN) films have provided critical insights into the role of defects, wrinkles, and impurities in thermal transport, with implications for next-generation nanoelectronic devices. He has also contributed to the development of polarization-entangled photon sources using type-0 PPKTP crystals, advancing quantum communication and cryptography. His collaborative publications in Physical Review B, Journal of Applied Physics, Nanotechnology, Optical Materials, and Optics Communications highlight his multidisciplinary approach. With strong expertise in 2D materials, superconductivity, and quantum criticality, Dr. Bera’s research is paving the way for breakthroughs in photonic devices and quantum technologies. His academic productivity and impactful contributions make him a promising candidate for recognition and awards in physics and materials research.

Profile : Orcid

Featured Publications

Bright source of degenerate polarization-entangled photons using type-0 PPKTP crystal: Effects of accidental coincidences
Optics Communications, 2025 – Demonstrated a high-brightness entangled photon source, relevant for quantum communication and cryptography.

Surface-enhanced Raman scattering-based sensing and ultrafast nonlinear optical properties of silver–hexagonal boron nitride nanocomposites achieved by femtosecond laser ablation
Optical Materials, 2024 – Reported novel nanocomposites with enhanced SERS activity and nonlinear optical response for sensing applications.

Nanostructured bi-metallic Pd–Ag alloy films for surface-enhanced Raman spectroscopy-based sensing application
Journal of Vacuum Science & Technology A, 2024 – Developed bimetallic alloy films for ultrasensitive SERS-based detection.

Decoupling the roles of defects/impurities and wrinkles in thermal conductivity of wafer-scale hBN films
Journal of Applied Physics, 2023 – Provided critical insights into thermal transport mechanisms in large-area hBN films.

Surface-phase superconductivity in a Mg-deficient V-doped MgTi₂O₄ spinel
Physical Review B, 2023 – Investigated unconventional superconductivity and surface effects in spinel oxides.