Mr. Shewa Getachew Mamo | Best Researcher Award

Mr. Shewa Getachew Mamo | Best Researcher Award

Wolkite University | Ethiopia

Shewa Getachew is a physicist at Wolkite University with an MSc in Physics and an emerging research profile in plasmonics, nonlinear optics, and nanocomposite photonics. With an h-index of 2, eight indexed documents, and ten citations from four sources, his work focuses on the optical properties of core–shell nanostructures, including refractive index engineering, group velocity modulation, optical bistability, and local field enhancement in metal–dielectric composites. His publications span reputable journals such as Physica E, Brazilian Journal of Physics, Applied Physics B, Optical Review, Canadian Journal of Physics, and The European Physical Journal D. His research explores size-, geometry-, and dielectric-dependent plasmonic responses in nanomaterials, contributing to slow- and fast-light applications, nonlinear optical switching, and photonic device optimization. He has also conducted interdisciplinary studies in phytochemistry and higher education pedagogy. As a physics lecturer, he integrates theoretical modeling with computational simulation to advance understanding of nano-optical phenomena. His contributions were recognized with the World Research Awards (WRA) Best Innovation Award (Physics and Astronomy) in 2024. Overall, his work continues to support the development of advanced photonic materials with tunable optical responses for next-generation nanotechnology applications.

Profiles : Orcid | Scopus

Featured Publications

Getachew, S. (2026). Size and dielectric-dependent plasmonic resonances in CdS@Ag core–shell quantum dots: Field enhancement, dispersion, and slow-light effects. Physica E: Low-Dimensional Systems and Nanostructures. https://doi.org/10.1016/j.physe.2025.116371

Getachew, S. (2025). Size-dependent dispersion and slow-light effects in CdS@Ag core-shell quantum dots: A theoretical study of plasmonic resonances and group velocity modulation. Brazilian Journal of Physics. https://doi.org/10.1007/s13538-025-01906-7

Getachew, S. (2025). Geometric and dielectric engineering of linear optical response in CdS@Ag core–shell quantum dots: A theoretical study of plasmonic enhancement and host effects. Applied Physics B. https://doi.org/10.1007/s00340-025-08578-w

Getachew, S. (2025). Geometric shape’s impact on core-shell nanocomposites’ optical properties. Journal of Computational Electronics. https://doi.org/10.1007/s10825-025-02388-1

Assoc. Prof. Dr. Farzaneh Bayat | Best Researcher Award

Assoc. Prof. Dr. Farzaneh Bayat | Best Researcher Award

Azarbaijan Shahid Madani University | Iran

Dr. Farzaneh Bayat is an accomplished Associate Professor of Physics at Azarbaijan Shahid Madani University, Iran. She earned her Ph.D. in Physics from the same institution in 2016, specializing in photonic crystals and nanophotonics. With a distinguished research trajectory that includes visiting scientist positions at the Instituto de Ciencia de Materiales de Madrid, Spain, and the University of Heidelberg BioQuant Center, Germany, Dr. Bayat has made significant contributions to the fields of photonic crystal-based sensors, plasmonic nanostructures, and optical materials. Her research spans nano- and micro-structured materials, quantum dot-sensitized solar cells, and photocatalytic nanocomposites. She has authored 37 scientific publications, garnering over 248 citations and maintaining an h-index of 10, reflecting the global impact of her work. Her studies on photonic biosensors, colloidal lithography, and plasmon-enhanced photocatalysis have advanced the design of next-generation optical sensors and solar energy devices. Dr. Bayat’s international collaborations and innovative work in nanophotonics have earned her recognition as a leading figure in optical materials science. Through her interdisciplinary approach, she continues to bridge physics, materials science, and nanotechnology to address challenges in sustainable energy and biomedical diagnostics.

Profiles : Google Scholar | Orcid | Scopus

Featured Publications

Amani-Ghadim, A. R., Mousavi, M., & Bayat, F. (2022). Dysprosium doping in CdTe@CdS type II core/shell and cosensitizing with CdSe for photocurrent and efficiency enhancement in quantum dot sensitized solar cells. Journal of Power Sources, 539, 231624. https://doi.org/10.1016/j.jpowsour.2022.231624

Pourasl, M. H., Vahedi, A., Tajalli, H., Khalilzadeh, B., & Bayat, F. (2023). Liquid crystal-assisted optical biosensor for early-stage diagnosis of mammary glands using HER-2. Scientific Reports, 13(1), 6847. https://doi.org/10.1038/s41598-023-33814-4

Khodam, F., Amani-Ghadim, A. R., Ashan, N. N., Sareshkeh, A. T., Bayat, F., & Gholinejad, M. (2022). CdTe quantum dots incorporated in CoNiAl layered double hydroxide interlayer spaces as a highly efficient visible light-driven photocatalyst for degradation of an azo dye and Bisphenol A. Journal of Alloys and Compounds, 898, 162768. https://doi.org/10.1016/j.jallcom.2021.162768

Bayat, F., Ahmadi-Kandjani, S., & Tajalli, H. (2016). Designing real-time biosensors and chemical sensors based on defective one-dimensional photonic crystals. IEEE Photonics Technology Letters, 28(17), 1843–1846. https://doi.org/10.1109/LPT.2016.2570664

Adl, H. P., Bayat, F., Ghorani, N., Ahmadi-Kandjani, S., & Tajalli, H. (2017). A defective one-dimensional photonic crystal-based chemical sensor in total internal reflection geometry. IEEE Sensors Journal, 17(13), 4046–4051. https://doi.org/10.1109/JSEN.2017.2701090

Assist. Prof. Dr. Fikadu Geldasa | Best Researcher Award

Assist. Prof. Dr. Fikadu Geldasa | Best Researcher Award

Walter Sisulu University | South Africa

Dr. Fikadu Takele Geldasa is an Assistant Professor of Physics at Walter Sisulu University, South Africa, and Oda Bultum University, Ethiopia. He has published 19 Scopus-indexed research papers, received more than 323 citations, and holds an h-index of 6. He obtained his Ph.D. in Materials Physics from Adama Science and Technology University. His research focuses on experimental and computational studies of functional nanomaterials using density functional theory (DFT) and materials characterization techniques. Dr. Geldasa works on the structural, electronic, and optical properties of doped metal oxides, perovskites, and semiconductor materials for applications in photocatalysis, energy conversion, and environmental remediation. His recent works on doped TiO₂ and α-NiS nanostructures provide insights into bandgap engineering and defect tuning for enhanced visible-light photocatalytic activity. He has published his research in leading journals such as Scientific Reports, Nanomaterials, Materials, and Physica Scripta. His interdisciplinary research integrates theory and experiment to develop advanced materials for renewable energy and sustainable technology. Through his scientific contributions, Dr. Geldasa is establishing himself as a promising researcher in materials physics and computational materials science, contributing significantly to the progress of clean energy and environmental technologies.

Profiles : ScopusOrcid | Research GateGoogle Scholar

Featured Publications

Geldasa, F. T., Dejene, F. B., Kebede, M. A., Hone, F. G., & Jira, E. T. (2025). Density functional theory study of chlorine, fluorine, nitrogen, and sulfur doped rutile TiO₂ for photocatalytic application. Scientific Reports, 15(1), 3390. https://doi.org/10.1038/s41598-024-84316-0

Geldasa, F. T., & Dejene, F. B. (2025). Transition metal doping effects on the structural, mechanical, electronic, and optical properties of α-NiS for photocatalysis applications via DFT + U insights. Applied Physics A. https://doi.org/10.1007/s00339-025-08942-9

Geldasa, F. T., & Dejene, F. B. (2025). First principles investigation of niobium and carbon-doped titanium dioxide for enhanced visible light photocatalytic activity. ChemistrySelect. https://doi.org/10.1002/slct.202504529

Geldasa, F. T., & Dejene, F. B. (2025). Exploration of vanadium and rhenium co-doped TiO₂ for enhanced photocatalytic performance via first principle density functional theory investigation. Physica Scripta. https://doi.org/10.1088/1402-4896/adf156

Geldasa, F. T., & Dejene, F. B. (2025). Density functional theory based exploration of structural, electronic, mechanical, thermodynamic, and optical properties of α-NiS for CO₂ adsorption. Journal of Physics: Condensed Matter. https://doi.org/10.1088/1361-648X/aded5f

Prof. Dr. Rami Ahmad El-Nabulsi | Physics Research Impact Award

Prof. Dr. Rami Ahmad El-Nabulsi | Physics Research Impact Award

Dr. Rami Ahmad El-Nabulsi |  University of South Bohemia, Czech Republic

Dr. Rami Ahmad El-Nabulsi is a globally renowned theoretical physicist and applied mathematician, currently serving as a Senior Research Fellow at the Center of Excellence in Quantum Technology, Chiang Mai University, Thailand; the Department of Optical Networks, CESNET, Prague; and the University of South Bohemia, Czech Republic. With over 390 peer-reviewed journal publications, 6,700+ citations, and an h-index of 43, Dr. El-Nabulsi has established himself as a pioneer in nonlinear dynamics, quantum fractals, and interdisciplinary modeling in physical and engineering systems.

Author Profile

Google Scholar

Education

Dr. Rami Ahmad El-Nabulsi earned his Ph.D. in Mathematical Physics and Modeling from Aix-Marseille University (AMU), France, where he developed advanced analytical frameworks for nonlinear systems. He also holds a Diploma of Advanced Studies (DEA) in Plasma Physics from the same institution, reflecting his deep expertise in high-energy and space plasma phenomena. Prior to that, he completed both his Master’s and Bachelor’s degrees in Physics, building a solid foundation in classical and modern physics that underpins his interdisciplinary research today.

Professional Experience

Dr. El-Nabulsi holds multiple international research affiliations. At Chiang Mai University, he contributes to cutting-edge studies in quantum atom optics and fractal modeling of quantum phenomena. At CESNET and the University of South Bohemia, his research extends into computational modeling, nonlinear systems, and quantum technologies for networking and information systems.

He has published extensively on advanced topics such as nonlinear Hamiltonian systems, quantum chaos, fractal acoustics, and fractional calculus applied to astrophysical and material science problems. His theoretical research is complemented by strong computational skills and interdisciplinary collaborations across nuclear, space, and condensed matter physics.

Research Skills

Dr. El-Nabulsi’s expertise spans a wide range of advanced topics in physics and applied mathematics, including quantum and fractal dynamics, nonlinear differential equations, plasma magnetohydrodynamics (MHD), space physics, nuclear engineering, and superconductivity. He is particularly well-versed in fractional calculus and mathematical modeling, which he applies to develop novel theoretical frameworks for understanding complex systems. Proficient in a variety of computational tools such as MATLAB, Mathematica, Python, Fortran, C/C++, LaTeX, and Octave, Dr. El-Nabulsi brings a computational edge to his theoretical work. His unique contribution lies in constructing new mathematical models and physical theories that interpret phenomena across multiple scales—from subatomic interactions to cosmological structures—within fractal and fractional dimensions.

Selected Publications

Chaotic dynamics and fractal analysis of nonstandard Hamiltonian systems, Chaos, Solitons and Fractals, 2025

A model for ice sheets and glaciers in fractal dimensions, Polar Science, 2025

Structural Analysis of Phononic Crystals in Fractal Dimensions, Journal of Elasticity, 2025

Modeling Stochastic Langevin Dynamics in Fractal Dimensions, Physica A, 2025

A Fractional Model for Soliton in Low-Earth Orbital Plasma, IEEE Transactions on Plasma Science, 2025

Qualitative Financial Modelling in Fractal Dimensions, Financial Innovation, 2025

Time-Dependent Heating of the Solar Corona in Fractal Dimensions, Advances in Space Research, 2024

Higher-order Quantum Waves in Fractal Dimensions, Canadian Journal of Physics, 2024

Physics Research Impact

Dr. Rami Ahmad El-Nabulsi’s research has profoundly impacted the field of theoretical and applied physics, offering groundbreaking insights into the behavior of complex systems across quantum, classical, and cosmic scales. With a solid foundation in mathematical physics and nonlinear dynamics, his work uniquely blends fractal geometry, fractional calculus, and nonlocal variational principles to model physical phenomena that conventional approaches struggle to explain.

His contributions have advanced the theoretical understanding of quantum chaos, Hamiltonian mechanics, and nonlinear wave propagation in fractal dimensions. Dr. El-Nabulsi’s innovative approaches have been applied to diverse fields including plasma magnetohydrodynamics (MHD), quantum electronics, astrophysics, superconductivity, and nuclear fusion physics. Notably, his models on magnetic chaotic field lines in fusion reactors, solar corona heating, and quantum waves in nonlocal geometries offer new perspectives for tackling real-world engineering and astrophysical problems.

Research Interests

Dr. El-Nabulsi’s research interests encompass a diverse and interdisciplinary array of topics, including quantum mechanics in fractal dimensions, geometrical and nonlinear dynamics, and chaos theory. He is deeply engaged in exploring fundamental theories such as general relativity and quantum field theory, while also contributing to applied domains like plasma physics, superconductivity, and mathematical modeling. His work extends to emerging fields such as fractal thermodynamics, multiscale physics, and biophysics, with additional focus on reactor and nuclear systems as well as acoustic metamaterials. This broad scope reflects his commitment to advancing theoretical understanding and practical applications across multiple branches of modern physics.

Conclusion

Dr. Rami Ahmad El-Nabulsi is a multidisciplinary scholar who continues to push the boundaries of theoretical physics and applied mathematics. His passion for scientific exploration, teaching, and global collaboration contributes profoundly to understanding the complex nonlinear structures that govern our universe — from the quantum to the cosmic scale.