Mr. Harish Verma | Best Researcher Award

Mr. Harish Verma | Best Researcher Award

Indian Institute of Technology (Banaras Hindu University) Varanasi | India

Dr. Harish Verma holds a B.Sc (UG), B.Ed, M.Sc (PG), and M.Phil in Physics and has qualified the CSIR-NET JRF examination. He is currently pursuing a Ph.D. in energy storage, dielectric materials, density functional theory (DFT), artificial intelligence (AI), and machine learning (ML) at the Indian Institute of Technology (BHU), Varanasi. His research focuses on the synthesis and characterization of advanced functional materials such as oxide perovskites, spinels, and graphene-based nanocomposites for dielectric and electrochemical energy storage applications. Dr. Verma integrates computational DFT analysis with AI- and ML-assisted materials modeling to accelerate the design and optimization of high-performance materials. His recent works include studies on dielectric and conductivity behavior of SrCeO₃, Ru-doped CNT/graphene-oxide supercapacitors, and MgAl₀.₅Fe₁.₅O₄ spinel ferrite systems. With over 20 scientific publications, an h-index of 6, and more than 90 citations, he has contributed significantly to understanding charge transport, dielectric relaxation, and structure–property relationships in multifunctional ceramics. His research aims to bridge experimental materials science and computational intelligence for developing sustainable, next-generation energy storage technologies and smart functional materials with enhanced performance and stability.

Profile : Google Scholar

Featured Publications

Verma, H., Tripathi, A., & Upadhyay, S. (2024). A comprehensive study of dielectric, modulus, impedance, and conductivity of SrCeO₃ synthesized by the combustion method. International Journal of Applied Ceramic Technology, 21(4), 3032–3047.

Verma, S., Das, T., Verma, S., Pandey, V. K., Pandey, S. K., Verma, H., & Verma, B. (2025). Hierarchically architecture of Ru-doped multichannel carbon nanotubes embedded with graphene oxide for supercapacitor material with long-term cyclic stability. Fuel, 381, 133517.

Verma, S., Maurya, A., Verma, H., Singh, R., & Bhoi, B. (2024). Unveiling the characteristics of MgAl₀.₅Fe₁.₅O₄ spinel ferrite: A study of structural, optical, and dielectric properties. Chemical Physics Impact, 9, 100674.

Nirala, G., Katheriya, T., Yadav, D., Verma, H., & Upadhyay, S. (2023). The evolution of coil-less inductive behaviour in La-doped Sr₂MnO₄. Emergent Materials, 6(6), 1951–1962.

Verma, H., Kumar, P., Satyarthi, S. K., Bhattacharya, B., Singh, A. K., & Upadhyay, S. (2025). Investigation of La₂FeO₄–rGO nanocomposite electrode material for symmetric and asymmetric supercapacitor. Journal of Energy Storage, 114, 115849.

Assoc. Prof. Dr. Haiou Wang | Best Researcher Award

Assoc. Prof. Dr. Haiou Wang | Best Researcher Award

Hangzhou Dianzi University | China

Dr. Haiou Wang is an accomplished Associate Professor at Hangzhou Dianzi University, China, specializing in spintronics and magnetic materials. He earned his Ph.D. in Physics from Nanjing University of Science and Technology in 2013 and has since established a strong academic and research career in condensed matter physics and materials science. Since joining Hangzhou Dianzi University in 2014, he has progressed from Assistant Professor to Associate Professor, contributing significantly to the study of magnetoresistance, magnetic phase transitions, and spin transport phenomena. Dr. Wang has published over 79 scientific documents, accumulating 690 citations with an h-index of 15, reflecting his consistent influence in the field. His notable works include studies on LaMnO₃, BaMnO₃, and Nd₁−ₓSrₓMnO₃ compounds, elucidating their structure–property relationships and magnetotransport mechanisms. Beyond his research contributions, Dr. Wang has served as a Guest Editor and Topic Editor for MDPI journals, demonstrating his leadership within the scholarly community. His research has been supported by the National Natural Science Foundation of China, highlighting his role in advancing materials for next-generation spintronic devices. Dr. Wang continues to pursue innovative research bridging magnetic materials and spintronics, contributing to the future of electronic and energy technologies.

Profiles : Scopus | Orcid 

Featured Publications

Li, J., Wang, H., & Wang, H. (2025). Structure, magnetism, and transport properties in hexagonal LaMnO₃. Journal of Electronic Materials. https://doi.org/10.1007/s11664-025-12473-7

Wang, H., Zhao, B., Tan, W., & Wang, H. (2025). Enhanced stability of lead-free CsSnI₃ perovskite through structural optimization. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-025-15480-w

Wang, H., Li, J., & Wang, H. (2025). Magnetism, magnetoresistance, and temperature coefficient of resistance of the BaMnO₃ compound. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-025-15446-y

Huang, S., Hua, J., Su, K., Yang, L., Wang, H., & Li, C. (2024). Anisotropic magnetoelectric effect in quasi-one-dimensional antiferromagnet Cu₃Mo₂O₉. Applied Physics Letters. https://doi.org/10.1063/5.0243143

Wang, H., Dong, F., Zhao, B., Tan, W., Huang, S., Su, K., Yang, L., & Wang, H. (2024). The colossal magnetoresistance within a wide temperature range in LaMnO₃ compound. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-024-13490-8