Assoc. Prof. Dr. Farzaneh Bayat | Best Researcher Award

Assoc. Prof. Dr. Farzaneh Bayat | Best Researcher Award

Azarbaijan Shahid Madani University | Iran

Dr. Farzaneh Bayat is an accomplished Associate Professor of Physics at Azarbaijan Shahid Madani University, Iran. She earned her Ph.D. in Physics from the same institution in 2016, specializing in photonic crystals and nanophotonics. With a distinguished research trajectory that includes visiting scientist positions at the Instituto de Ciencia de Materiales de Madrid, Spain, and the University of Heidelberg BioQuant Center, Germany, Dr. Bayat has made significant contributions to the fields of photonic crystal-based sensors, plasmonic nanostructures, and optical materials. Her research spans nano- and micro-structured materials, quantum dot-sensitized solar cells, and photocatalytic nanocomposites. She has authored 37 scientific publications, garnering over 248 citations and maintaining an h-index of 10, reflecting the global impact of her work. Her studies on photonic biosensors, colloidal lithography, and plasmon-enhanced photocatalysis have advanced the design of next-generation optical sensors and solar energy devices. Dr. Bayat’s international collaborations and innovative work in nanophotonics have earned her recognition as a leading figure in optical materials science. Through her interdisciplinary approach, she continues to bridge physics, materials science, and nanotechnology to address challenges in sustainable energy and biomedical diagnostics.

Profiles : Google Scholar | Orcid | Scopus

Featured Publications

Amani-Ghadim, A. R., Mousavi, M., & Bayat, F. (2022). Dysprosium doping in CdTe@CdS type II core/shell and cosensitizing with CdSe for photocurrent and efficiency enhancement in quantum dot sensitized solar cells. Journal of Power Sources, 539, 231624. https://doi.org/10.1016/j.jpowsour.2022.231624

Pourasl, M. H., Vahedi, A., Tajalli, H., Khalilzadeh, B., & Bayat, F. (2023). Liquid crystal-assisted optical biosensor for early-stage diagnosis of mammary glands using HER-2. Scientific Reports, 13(1), 6847. https://doi.org/10.1038/s41598-023-33814-4

Khodam, F., Amani-Ghadim, A. R., Ashan, N. N., Sareshkeh, A. T., Bayat, F., & Gholinejad, M. (2022). CdTe quantum dots incorporated in CoNiAl layered double hydroxide interlayer spaces as a highly efficient visible light-driven photocatalyst for degradation of an azo dye and Bisphenol A. Journal of Alloys and Compounds, 898, 162768. https://doi.org/10.1016/j.jallcom.2021.162768

Bayat, F., Ahmadi-Kandjani, S., & Tajalli, H. (2016). Designing real-time biosensors and chemical sensors based on defective one-dimensional photonic crystals. IEEE Photonics Technology Letters, 28(17), 1843–1846. https://doi.org/10.1109/LPT.2016.2570664

Adl, H. P., Bayat, F., Ghorani, N., Ahmadi-Kandjani, S., & Tajalli, H. (2017). A defective one-dimensional photonic crystal-based chemical sensor in total internal reflection geometry. IEEE Sensors Journal, 17(13), 4046–4051. https://doi.org/10.1109/JSEN.2017.2701090

Prof. Afzal S. M. | Best Researcher Award

Prof. Afzal S. M. | Best Researcher Award

Physics Department, Aligarh Muslim University | India

Prof. S. M. Afzal is a Professor of Physics at Aligarh Muslim University, India, with over 25 years of experience in teaching and research. He obtained his Ph.D. in Physics from Aligarh Muslim University in 1997, specializing in atomic and laser spectroscopy. His research focuses on high-resolution spectroscopy, nonlinear optics, photonic materials, and optoelectronic applications. Prof. Afzal has made significant contributions to the development of experimental facilities and has conducted extensive studies on light–matter interactions using advanced laser and optical techniques. He has published more than 54 research papers in reputed international journals, achieving over 542 citations, an h-index of 12, and an i10-index of 17, reflecting the strong impact of his scholarly work. In addition, he has successfully completed five funded research projects and guided more than twenty postgraduate theses. His work integrates experimental and computational approaches for exploring nonlinear optical properties of organic and inorganic systems, contributing to advancements in photonics and laser technology. Through his dedicated research and mentorship, Prof. Afzal continues to play a vital role in advancing modern optical physics and inspiring the next generation of scientists.

Profiles : Research GateGoogle Scholar

Featured Publications

El-Shishtawy, R. M., Al-Zahrani, F. A. M., Afzal, S. M., Razvi, M. A. N., & Al-amshany, Z. M. (2016). Synthesis, linear and nonlinear optical properties of a new dimethine cyanine dye derived from phenothiazine. RSC Advances, 6(94), 91546–91556.

Kamaal, S., Mehkoom, M., Ali, A., Afzal, S. M., Alam, M. J., Ahmad, S., & Ahmad, M. (2021). Potential third-order nonlinear optical response facilitated by intramolecular charge transfer in a simple Schiff base molecule: Experimental and theoretical exploration. ACS Omega, 6(9), 6185–6194.*

Khan, S. A., Razvi, M. A. N., Bakry, A. H., Afzal, S. M., Asiri, A. M., & El-Daly, S. A. (2015). Microwave assisted synthesis, spectroscopic studies and nonlinear optical properties of bis-chromophores. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 685–692.*

Fatima, A., Ali, A., Shabbir, S., Khan, M., Mehkoom, M., Afzal, S. M., Ahmad, M., & Ahmad, S. (2022). Synthesis, crystal structure, characterization, Hirshfeld analysis, molecular docking and DFT calculations of 5-phenylamino-isophthalic acid: A good NLO material. Journal of Molecular Structure, 132791.

Mehkoom, M., Afzal, S. M., Ahmad, S., & Khan, S. A. (2021). Physicochemical and nonlinear optical properties of novel environmentally benign heterocyclic azomethine dyes: Experimental and theoretical studies. PLOS ONE, 11(9), e0161613.*

Mr. Weijiang Xu | Best Researcher Award

Mr. Weijiang Xu | Best Researcher Award

Guilin University of Electronic Technology | China

Dr. Weijiang Xu is a Lecturer at the School of Optoelectronic Engineering, Guilin University of Electronic Technology. He earned his Doctor of Science (2024) and Master of Science (2018) in Physics from Harbin Institute of Technology, following his Bachelor’s degree from Lingnan Normal University in 2016. His research centers on optical fiber sensors, quantum dot photonics, and upconversion luminescence for multifunctional sensing applications. Dr. Xu has authored 17 scientific documents with over 120 citations and maintains an h-index of 8, reflecting his growing influence in the field of optical materials and photonic sensing. His representative works, published in leading journals such as Optics Express, Optics Letters, Journal of Lightwave Technology, and Optics Communications, explore innovative fiber-based devices for temperature, curvature, and flow sensing. He has also contributed to the development of several patented optical fiber sensing technologies in China. Dr. Xu’s recent advancements include bubble-tunable and calibration-free optical fiber sensors employing quantum dots-filled liquid cores. His research continues to bridge nanomaterials with optical engineering for advanced environmental and biomedical sensing. With a record of impactful publications and technological innovation, Dr. Xu is emerging as a promising scholar in the field of optoelectronic sensing.

Profile :  Scopus 

Featured Publications

Xu, W., Li, Y., Shang, J., Wang, Y., Hou, L., Liu, Y., & Qu, S. (2022). Optical fiber sensor based on upconversion luminescence for synchronous temperature and curvature sensing. Optics Express, 30(18), 33136–33136.

Xu, W., Qu, J., Liu, Y., Bai, J., Li, Y., & Qu, S. (2023). Optical fiber inclinometer with dynamically controllable excitation length of quantum dots liquid-core waveguide based on a photo-controlled bubble. Optics Letters, 48(6), 1403–1406.

Xu, W., Qu, J., Liu, Y., Bai, J., Li, Y., & Qu, S. (2023). A calibration-free fiber sensor based on CdZnSe/ZnSe/ZnS quantum dots for real-time monitoring of human thermal activities. Measurement, 206, 112315.

Xu, W., Liu, Y., Li, Y., & Qu, S. (2024). Horizontal clinometer based on a movable bubble in the arc-shaped quantum dots liquid cavity. Journal of Lightwave Technology, 42(6), 2193–2199.

Qu, J., Zhang, Y., Ling, M., & Xu, W.* (2025). Heat-typed fiber liquid flow sensor with wide sensing range and high sensitivity. Journal of Lightwave Technology, 43(1), 369–375.