Dr. Jian Lei | Editorial Board Member

Dr. Jian Lei | Editorial Board Member

Chongqing Three Gorges Medical College | China

Dr. Jian Lei is a promising researcher in organic optoelectronic materials with a PhD in Chemistry from National Tsing Hua University, where he specialized in advanced molecular engineering for high-performance organic emitters. He currently serves at Chongqing Three Gorges Medical College, contributing to research and foundational science education. Dr. Lei has established a strong publication record, with an h-index of 21, more than 20 research documents, and over 240 citations. His work focuses on thermally activated delayed fluorescence (TADF), azepine-modulated emitters, multiple-resonance molecular systems, and strategies for suppressing nonradiative decay to achieve efficient, stable, and narrowband OLED emission. He has authored impactful papers in top-tier journals such as Materials Horizons, Chemical Science, ACS Materials Letters, JACS Au, and The Journal of Physical Chemistry C. His contributions include breakthroughs in azepine engineering, high-EQE blue OLEDs, and molecular strategies for boosting afterglow and upconversion performance. Although early in his career, his rapidly growing citation record and consistent publications underscore his rising influence in materials chemistry and optoelectronic device research. In conclusion, Dr. Lei is an emerging scientist whose innovative molecular designs hold strong potential for advancing next-generation OLED technologies.

Profile : Orcid

Featured Publications

Chen, Y.-K., Lei, J., Chao, Y.-C., Kung, Y.-C., Hung, W.-Y., Hsu, L.-Y., & Wu, T.-L. (2025). Strategic azepine engineering realizes highly efficient and stable blue narrowband light-emitting diodes. Materials Horizons.

Lei, J., Chen, Y.-K., Wang, M.-J., Ko, C.-L., Hung, W.-Y., Hsu, L.-Y., Cheng, C.-H., & Wu, T.-L. (2025). Azepine modulation in thermally activated delayed fluorescence emitters for OLEDs achieving nearly 40% EQE. ACS Materials Letters.

Liu, P.-C., Lei, J., Liu, C.-C., Fan, Y.-T., & Wu, T.-L. (2025). Rational molecular design for boosting afterglow efficiency in nonplanar carbazolocarbazoles. JACS Au.

Chen, Y.-K., Lei, J., & Wu, T.-L. (2024). Elevating the upconversion performance of a multiple resonance thermally activated delayed fluorescence emitter via an embedded azepine approach. Chemical Science.

Lei, J., Chang, C.-W., Chen, Y.-K., Chou, P.-Y., Hsu, L.-Y., Cheng, C.-H., & Wu, T.-L. (2024). Strategy of modulating nonradiative decay for approaching efficient thermally activated delayed fluorescent emitters. The Journal of Physical Chemistry C.

Prof. Jean-Patrick Connerade | Best Researcher Award

Prof. Jean-Patrick Connerade | Best Researcher Award

Imperial College London | United Kingdom

Jean-Patrick Connerade is an Emeritus Professor of Physics at Imperial College London and a distinguished member of the European Academy of Sciences, Arts and Letters (EASAL) in Paris. He holds a Doctor of Science (D.Sc.) degree from the University of London and has made pioneering contributions to atomic and molecular physics, particularly in the study of quantum confinement, atomic structure, and resonances in confined atoms and ions. Over his illustrious career, Professor Connerade has published more than 213 scientific documents, amassing 4,363 citations and achieving an impressive h-index of 30, reflecting his enduring impact on the global scientific community. His notable works include “The Arrow of Time in Quantum Theory” (2025), “The Atom at the Heart of Physics” (2023), and studies on C₆₀ spin-charging and confinement resonances. A prolific author and thought leader, he has contributed extensively to understanding the fundamental behavior of atoms under confinement and the crossover between simple and complex quantum systems. Recognized internationally for his scholarship, Professor Connerade continues to inspire physicists worldwide through his deep insights into atomic theory and his leadership in advancing interdisciplinary research in quantum and optical physics.

Profiles : Orcid | Scopus

Featured Publications

Connerade, J. P. (2025). The arrow of time in quantum theory. Atoms, 13(11), 86. https://doi.org/10.3390/atoms13110086

Connerade, J. P. (2023). The atom at the heart of physics. Atoms.

Connerade, J. P. (2021). A new angle on resonances in confined atoms and ions. Physica Scripta.

Connerade, J. P. (2018). On the perturbation of the 6snd 1,3D₂ series by the 5d7d 1D₂ state of barium. Laser Physics.

Connerade, J. P. (2015). C₆₀ spin-charging with an eye on a quantum computer. Journal of Physics B: Atomic, Molecular and Optical Physics.

Connerade, J. P. (2010). Initial considerations on the relationship between the optical absorption and the thermal conductivity in dielectrics. Journal of Physics D: Applied Physics.

Prof. Afzal S. M. | Best Researcher Award

Prof. Afzal S. M. | Best Researcher Award

Physics Department, Aligarh Muslim University | India

Prof. S. M. Afzal is a Professor of Physics at Aligarh Muslim University, India, with over 25 years of experience in teaching and research. He obtained his Ph.D. in Physics from Aligarh Muslim University in 1997, specializing in atomic and laser spectroscopy. His research focuses on high-resolution spectroscopy, nonlinear optics, photonic materials, and optoelectronic applications. Prof. Afzal has made significant contributions to the development of experimental facilities and has conducted extensive studies on light–matter interactions using advanced laser and optical techniques. He has published more than 54 research papers in reputed international journals, achieving over 542 citations, an h-index of 12, and an i10-index of 17, reflecting the strong impact of his scholarly work. In addition, he has successfully completed five funded research projects and guided more than twenty postgraduate theses. His work integrates experimental and computational approaches for exploring nonlinear optical properties of organic and inorganic systems, contributing to advancements in photonics and laser technology. Through his dedicated research and mentorship, Prof. Afzal continues to play a vital role in advancing modern optical physics and inspiring the next generation of scientists.

Profiles : Research GateGoogle Scholar

Featured Publications

El-Shishtawy, R. M., Al-Zahrani, F. A. M., Afzal, S. M., Razvi, M. A. N., & Al-amshany, Z. M. (2016). Synthesis, linear and nonlinear optical properties of a new dimethine cyanine dye derived from phenothiazine. RSC Advances, 6(94), 91546–91556.

Kamaal, S., Mehkoom, M., Ali, A., Afzal, S. M., Alam, M. J., Ahmad, S., & Ahmad, M. (2021). Potential third-order nonlinear optical response facilitated by intramolecular charge transfer in a simple Schiff base molecule: Experimental and theoretical exploration. ACS Omega, 6(9), 6185–6194.*

Khan, S. A., Razvi, M. A. N., Bakry, A. H., Afzal, S. M., Asiri, A. M., & El-Daly, S. A. (2015). Microwave assisted synthesis, spectroscopic studies and nonlinear optical properties of bis-chromophores. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 685–692.*

Fatima, A., Ali, A., Shabbir, S., Khan, M., Mehkoom, M., Afzal, S. M., Ahmad, M., & Ahmad, S. (2022). Synthesis, crystal structure, characterization, Hirshfeld analysis, molecular docking and DFT calculations of 5-phenylamino-isophthalic acid: A good NLO material. Journal of Molecular Structure, 132791.

Mehkoom, M., Afzal, S. M., Ahmad, S., & Khan, S. A. (2021). Physicochemical and nonlinear optical properties of novel environmentally benign heterocyclic azomethine dyes: Experimental and theoretical studies. PLOS ONE, 11(9), e0161613.*

Prof. Morteza Vahedpour | Best Researcher Award

Prof. Morteza Vahedpour | Best Researcher Award

University of Zanjan | Iran

Dr. Morteza Vahedpour is a prominent Iranian physical chemist and computational researcher, serving as a faculty member in the Department of Chemistry at the University of Zanjan. He earned his Ph.D. in Physical Chemistry from Isfahan University of Technology, specializing in statistical thermodynamics and viscosity relaxation in molecular fluids, following his M.Sc. in computational physical chemistry from Shiraz University. With over 70 peer-reviewed publications, an h-index of 19, more than 1,000 citations, and over 80 research documents, Dr. Vahedpour is widely recognized for his contributions to computational and theoretical chemistry. His research spans reaction kinetics, atmospheric chemistry, acid rain formation mechanisms, DFT calculations, molecular modeling, and the computational design of drug delivery nanoparticles. He has co-authored influential studies on transition metal complexes, polycyclic aromatic hydrocarbons, and mechanistic pathways of key atmospheric reactions. Dr. Vahedpour’s work integrates theory with practical applications, offering insights into catalysis, environmental remediation, and sustainable chemical processes. His dedication to advancing fundamental and applied research continues to inspire young scientists and contributes to the global understanding of chemical reaction mechanisms, green chemistry innovations, and the development of computational methods for solving complex problems in modern chemistry.

Profile : Google Scholar

Featured Publications

Vahedpour, M., Rostamizadeh, K., & Bozorgi, S. (2012). Synthesis, characterization and evaluation of computationally designed nanoparticles of molecular imprinted polymers as drug delivery systems. International Journal of Pharmaceutics, 424(1–2), 67–75.

Monfared, H. H., Vahedpour, M., Yeganeh, M. M., Ghorbanloo, M., & Mayer, P. (2011). Concentration dependent tautomerism in green [Cu(HL1)(L2)] and brown [Cu(L1)(HL2)] with H2L1=(E)-N′-(2-hydroxy-3-methoxybenzylidene) benzoylhydrazone and HL2. Dalton Transactions, 40(6), 1286–1294.

Monfared, H. H., Alavi, S., Bikas, R., Vahedpour, M., & Mayer, P. (2010). Vanadiumoxo–aroylhydrazone complexes: Synthesis, structure and DFT calculations. Polyhedron, 29(18), 3355–3362.

Moghaddam, S. K., Rasoulifard, M., Vahedpour, M., & Eskandarian, M. (2014). Removal of tylosin from aqueous solution by UV/nano Ag/S2O8²− process: Influence of operational parameters and kinetic study. Korean Journal of Chemical Engineering, 31(9), 1577–1581.

Nayebzadeh, M., Vahedpour, M., & Rius-Bartra, J. M. (2020). Kinetics and oxidation mechanism of pyrene initiated by hydroxyl radical: A theoretical investigation. Chemical Physics, 528, 110522.

Vahedpour, M., & Zolfaghari, F. (2011). Mechanistic study on the atmospheric formation of acid rain based on the sulfur dioxide. Structural Chemistry, 22(6), 1331–1338.