Prof. Dr. Galina Makeeva | Best Researcher Award

Prof. Dr. Galina Makeeva | Best Researcher Award

Penza State University | Russia

Dr. Galina Makeeva is a highly accomplished physicist and researcher at the University of Penza, Russian Federation, specializing in terahertz photonics, graphene plasmonics, and magneto-optical materials. With an impressive research portfolio of 115 scientific publications, her studies have garnered 236 citations and an h-index of 8, demonstrating her sustained impact in the field. Dr. Makeeva’s research focuses on the theoretical modeling and numerical simulation of electromagnetic wave interactions with advanced nanostructures such as graphene nanoribbons, metasurfaces, and nonlinear semiconductor systems. Her pioneering work on magnetically tunable and electrically controllable metasurfaces has opened new pathways for developing next-generation terahertz and mid-infrared optoelectronic devices. She has published extensively in top-tier journals including Optics and Spectroscopy, Technical Physics, and the Journal of Experimental and Theoretical Physics. Through her contributions, Dr. Makeeva has advanced the understanding of graphene-based photonic platforms, bridging the gap between classical electromagnetics and emerging nanophotonic technologies. Her innovative and interdisciplinary research continues to shape the evolution of high-frequency devices and photonic materials. Recognized for her academic excellence and scientific rigor, Dr. Makeeva remains at the forefront of developing functional materials for next-generation communication and sensing technologies.

Profile : Scopus

Featured Publications

Makeeva, G. S. (2025). Magnetoplasmonic effects induced by diffraction of terahertz waves on magnetically biased graphene metasurfaces. Journal of Experimental and Theoretical Physics.

Makeeva, G. S. (2025). Tunable polarization magnetooptical effects at scattering of terahertz radiation from graphene nanoribbon gratings in a magnetic field. Journal of Experimental and Theoretical Physics.

Makeeva, G. S. (2025). Numerical simulation of scattering patterns of terahertz waves on graphene nanoribbon arrays in a magnetic field. Technical Physics.

Makeeva, G. S. (2025). Method of nonlinear autonomous blocks with Floquet channels for simulation of nonlinear microwave devices with distributed interaction. Technical Physics.

Makeeva, G. S. (2025). Numerical investigation of the diffraction field of terahertz waves on graphene nanoribbons upon applying a magnetic field. Technical Physics.

Dr. Shyamal Mondal | Best Research Article Award

Dr. Shyamal Mondal | Best Research Article Award

Defence Institute of Advanced Technology | India

Shyamal Mondal is a leading researcher with an h-index of 9, 58 publications, and 293 citations across 235 documents, demonstrating significant contributions in photonics, terahertz technologies, and ultrafast optics. He earned his Ph.D. in Physics and Meteorology from the Indian Institute of Technology Kharagpur and is currently a faculty member at SRM Institute of Science and Technology, Kattankulathur, India. His research focuses on terahertz imaging and antenna design, deep learning for image enhancement, nonlinear optical phenomena, ultrafast fiber lasers, and advanced materials such as carbon nanostructures and MXenes. Dr. Mondal has advanced interdigitated photoconductive antennas, coherent mid-infrared laser sources, and modelocked fiber lasers, integrating theoretical and experimental approaches. He has published in high-impact journals including ACS Applied Optical Materials, Optics Express, and Journal of Applied Physics, and presented his work at international conferences. His contributions have strengthened the fields of terahertz communications, optical nonlinearity, and laser technologies. Dr. Mondal continues to drive innovation, mentoring emerging researchers, and bridging fundamental science with applied photonics solutions, thereby expanding the frontiers of optical and terahertz research.

Profiles : Google Scholar | Orcid | Scopus | Research Gate

Featured Publications

Mondal, S., Jampani, K., Raj, A. R., Roy Chowdhury, D., & Sethi, A. (2025). Implementing W-Net deep learning for terahertz image enhancement and segmentation. Engineering Research Express.

Mondal, S., Raj, A. R., & Saha, S. (2024). Advancements in the use of artificial saturable absorbers for modelocking of 2 µm ultrafast fiber lasers. Annalen der Physik.

Rathinasamy, V., Thipparaju, R. R., Boby, E. N. F., & Mondal, S. (2022). Interdigitated photoconductive antenna for future wireless communications. Microwave and Optical Technology Letters, 64(12), 2189–2196.

Boby, E. N. F., Prajapati, J., Rathinasamy, V., Mukherjee, S., & Mondal, S. (2022). Parametric investigation of interdigitated photoconductive antenna for efficient terahertz applications. Arabian Journal for Science and Engineering, 47(3), 3597–3609.

Mitra, N., Patra, A. K., Singh, S. P., Mondal, S., Datta, P. K., & Varshney, S. K. (2020). Interfacial delamination in glass-fiber/polymer-foam-core sandwich composites using singlemode–multimode–singlemode optical fiber sensors: Identification based on experimental investigation. Journal of Sandwich Structures and Materials.

Mondal, S., Mukherjee, S., Singh, S. P., Rand, S. C., Bhattacharya, S., Das, A. C., & Datta, P. K. (2016). Dynamic gain aperture modelocking in picosecond regime based on cascaded second-order nonlinearity. Optics Express, 24(15), 15274–15285.