Prof. Dr. Motoichi Ohtsu | Best Researcher Award

Prof. Dr. Motoichi Ohtsu | Best Researcher Award

Research Origin for Dressed Photon | Japan

Motoichi Ohtsu is a distinguished researcher in nanophotonics and dressed-photon science, currently affiliated with the Research Origin for Dressed Photon in Yokohama, Japan. His scientific influence is reflected in his extensive Scopus record, which documents 596 publications, 9,084 citations, and an h-index of 47, demonstrating his long-standing impact across photonics and optical materials research. His works span journal articles, conference papers, book chapters, and major monographs, covering themes such as dressed photons, near-field optical science, SiC-based magneto-optical devices, polarization control, and the theoretical foundations connecting dressed photons with off-shell quantum fields. His recent ORCID-listed contributions include Perspective on an Emerging Frontier of Nanoscience Opened up by Dressed Photon Studies, Drastic Advancement in Nanophotonics Achieved by a New Dressed Photon Study, and influential papers on phase delay, polarization rotation, and cosmological links to dressed-photon theory. Ohtsu’s research interests encompass nanophotonics, near-field interactions, magneto-optical effects, optical phase phenomena, and advanced semiconductor photonics. With decades of academic and research leadership, including serving as Chief Director at the Research Origin for Dressed Photon, he has significantly shaped the evolution of modern optical science. In conclusion, his body of work continues to define new directions in dressed-photon technology and next-generation nanophotonic systems.

Profiles : Orcid | Scopus

Featured Publications

Sakuma, H., Ojima, I., & Ohtsu, M. (2023). Perspective on an emerging frontier of nanoscience opened up by dressed photon studies. Nanoarchitectonics.

Sakuma, H., Ojima, I., & Ohtsu, M. (2021). Drastic advancement in nanophotonics achieved by a new dressed photon study. Journal of the European Optical Society Rapid Publications.

Ohtsu, M., et al. (2020). SiC transmission-type polarization rotator using a large magneto-optical effect boosted and stabilized by dressed photons. Scientific Reports.

Ohtsu, M., et al. (2020). Off-shell quantum fields to connect dressed photons with cosmology. Symmetry.

Dr. Kousik Bera | Editorial Board Member

Dr. Kousik Bera | Editorial Board Member

Indian Institute of Technology Bombay | India

Kousik Bera is an emerging researcher in optical physics and advanced materials science, with an h-index of 4, 11 research documents, and 48 citations across 44 citing works. He earned his research training at premier Indian institutions, focusing extensively on Raman spectroscopy, thermal transport in two-dimensional materials, nonlinear optics, and quantum photonics. His experience spans studies on hexagonal boron nitride (hBN), GaN nanowall networks, Heusler alloys, Pd–Ag nanostructures, and entangled photon generation using PPKTP crystals. He has contributed to prestigious journals such as Optics Communications, Physical Review B, Journal of Applied Physics, Applied Physics Letters, Optical Materials, and Nanotechnology. His research interests include 2D materials, ultrafast laser–matter interactions, spectroscopy-driven materials characterization, superconductivity, and quantum-enhanced optical systems. Bera’s work integrates experimental materials science with quantum photonic applications, highlighting his interdisciplinary expertise. His contributions have supported advancements in thermal conductivity engineering, strain analysis, nonlinear optical behavior, and surface-enhanced Raman spectroscopy (SERS). He has collaborated with multiple national and international research groups, extending the impact of his work across several domains of condensed matter physics. With a steadily growing publication record and diversified research output, he continues to advance innovative spectroscopic and nanomaterial-based methodologies.

Profiles : Google Scholar | Scopus Orcid

Featured Publications

Bera, K., Dubey, P. K., Kumar, A., & Jha, M. (2025). Bright source of degenerate polarization-entangled photons using type-0 PPKTP crystal: Effects of accidental coincidences. Optics Communications, 132401. https://doi.org/10.1016/j.optcom.2025.132401

Bera, K., Moram, S. S. B., Banerjee, D., Lahiri, J., & Rao Soma, V. (2024). Surface enhanced Raman scattering-based sensing and ultrafast nonlinear optical properties of silver-hexagonal boron nitride nanocomposites achieved by femtosecond laser ablation. Optical Materials, 157, 116393. https://doi.org/10.1016/j.optmat.2024.116393

Das, N. M., Chauhan, A., Bharati, M. S. S., Bera, K., et al. (2024). Nanostructured bi-metallic Pd–Ag alloy films for surface-enhanced Raman spectroscopy-based sensing application. Journal of Vacuum Science & Technology A, 42(5). https://doi.org/10.1116/6.0003748

Bera, K., Chugh, D., Bandopadhyay, A., Tan, H. H., Roy, A., & Jagadish, C. (2023). Decoupling the roles of defects/impurities and wrinkles in thermal conductivity of wafer-scale hBN films. Journal of Applied Physics, 134(15). https://doi.org/10.1063/5.0168186

Rahaman, A., Paramanik, T., Pal, B., Pal, R., Maji, P., Bera, K., et al. (2023). Surface-phase superconductivity in a Mg-deficient V-doped MgTi₂O₄ spinel. Physical Review B, 107(24), 245124. https://doi.org/10.1103/physrevb.107.245124

Mr. Shehzad Khan | Best Researcher Award

Mr. Shehzad Khan | Best Researcher Award

Nanjing University of Science and Technology | China

Mr. Shehzad Khan is a promising Pakistani quantum physicist with a growing research profile in the fields of quantum optics, quantum information, plasmonics, and nonlinear optics. With an h-index of 2, 3 published documents, and 7 citations, he has contributed to several high-impact journals, including Results in Physics, The European Physical Journal Plus, International Journal of Theoretical Physics, Journal of Magnetism and Magnetic Materials, and Physics Letters A. He completed his Bachelor’s degree in Physics from the University of Malakand (2019–2023), where his thesis focused on “Manipulation of Spectral Hole Burning in Atomic Medium by Doppler Broadening Effect.” His research expertise includes density matrix formalism, optical solitons, Goos-Hänchen shift, photonic spin Hall effect, and surface plasmon polaritons. Shehzad has demonstrated strong analytical and computational skills using Mathematica, MATLAB, and LaTeX, coupled with proficiency in data analysis and technical writing. Recognized for his academic excellence, he received the Higher Education Commission (HEC) Laptop Award for outstanding performance and an HEC Merit and Need-Based Scholarship. With a clear vision to advance the understanding of light-matter interaction and quantum systems, Shehzad Khan aspires to make impactful contributions to modern quantum science and optical physics.

Profile : Scopus

Featured Publications

Khan, S., Bilal, M., Uddin, S., Akgül, A., & Riaz, M. B. (2024). Spherical manipulation of lateral shifts in reflection and transmission through chiral medium. Results in Physics, 107647.

Khan, S., Saeed, M., Khan, M. A., Aldosary, S. F., & Ahmad, S. Coherent manipulation of optical solitons in four-level N-type atomic medium. International Journal of Theoretical Physics.

Ullah, R., Khan, S., Amina, S., & Javaid, S. Tunable cratering of lateral Goos–Hänchen shift in reflection and transmission of structured light in a chiral atomic medium. The European Physical Journal Plus.

Ullah, H., Khan, S., & Bilal, M. Localized electric and magnetic tangent loss via parity-time symmetry in induced high magneto-optical atomic medium. Journal of Magnetism and Magnetic Materials.

Ahmad, M., Khan, S.*, Shah, S. M. H., Salman, M., & Yousaf, M. (2025). Coherent manipulation of sensitivity of structure plasmon polariton waves. The European Physical Journal Plus.

Prof. Dr. Galina Makeeva | Best Researcher Award

Prof. Dr. Galina Makeeva | Best Researcher Award

Penza State University | Russia

Dr. Galina Makeeva is a highly accomplished physicist and researcher at the University of Penza, Russian Federation, specializing in terahertz photonics, graphene plasmonics, and magneto-optical materials. With an impressive research portfolio of 115 scientific publications, her studies have garnered 236 citations and an h-index of 8, demonstrating her sustained impact in the field. Dr. Makeeva’s research focuses on the theoretical modeling and numerical simulation of electromagnetic wave interactions with advanced nanostructures such as graphene nanoribbons, metasurfaces, and nonlinear semiconductor systems. Her pioneering work on magnetically tunable and electrically controllable metasurfaces has opened new pathways for developing next-generation terahertz and mid-infrared optoelectronic devices. She has published extensively in top-tier journals including Optics and Spectroscopy, Technical Physics, and the Journal of Experimental and Theoretical Physics. Through her contributions, Dr. Makeeva has advanced the understanding of graphene-based photonic platforms, bridging the gap between classical electromagnetics and emerging nanophotonic technologies. Her innovative and interdisciplinary research continues to shape the evolution of high-frequency devices and photonic materials. Recognized for her academic excellence and scientific rigor, Dr. Makeeva remains at the forefront of developing functional materials for next-generation communication and sensing technologies.

Profile : Scopus

Featured Publications

Makeeva, G. S. (2025). Magnetoplasmonic effects induced by diffraction of terahertz waves on magnetically biased graphene metasurfaces. Journal of Experimental and Theoretical Physics.

Makeeva, G. S. (2025). Tunable polarization magnetooptical effects at scattering of terahertz radiation from graphene nanoribbon gratings in a magnetic field. Journal of Experimental and Theoretical Physics.

Makeeva, G. S. (2025). Numerical simulation of scattering patterns of terahertz waves on graphene nanoribbon arrays in a magnetic field. Technical Physics.

Makeeva, G. S. (2025). Method of nonlinear autonomous blocks with Floquet channels for simulation of nonlinear microwave devices with distributed interaction. Technical Physics.

Makeeva, G. S. (2025). Numerical investigation of the diffraction field of terahertz waves on graphene nanoribbons upon applying a magnetic field. Technical Physics.

Prof. Afzal S. M. | Best Researcher Award

Prof. Afzal S. M. | Best Researcher Award

Physics Department, Aligarh Muslim University | India

Prof. S. M. Afzal is a Professor of Physics at Aligarh Muslim University, India, with over 25 years of experience in teaching and research. He obtained his Ph.D. in Physics from Aligarh Muslim University in 1997, specializing in atomic and laser spectroscopy. His research focuses on high-resolution spectroscopy, nonlinear optics, photonic materials, and optoelectronic applications. Prof. Afzal has made significant contributions to the development of experimental facilities and has conducted extensive studies on light–matter interactions using advanced laser and optical techniques. He has published more than 54 research papers in reputed international journals, achieving over 542 citations, an h-index of 12, and an i10-index of 17, reflecting the strong impact of his scholarly work. In addition, he has successfully completed five funded research projects and guided more than twenty postgraduate theses. His work integrates experimental and computational approaches for exploring nonlinear optical properties of organic and inorganic systems, contributing to advancements in photonics and laser technology. Through his dedicated research and mentorship, Prof. Afzal continues to play a vital role in advancing modern optical physics and inspiring the next generation of scientists.

Profiles : Research GateGoogle Scholar

Featured Publications

El-Shishtawy, R. M., Al-Zahrani, F. A. M., Afzal, S. M., Razvi, M. A. N., & Al-amshany, Z. M. (2016). Synthesis, linear and nonlinear optical properties of a new dimethine cyanine dye derived from phenothiazine. RSC Advances, 6(94), 91546–91556.

Kamaal, S., Mehkoom, M., Ali, A., Afzal, S. M., Alam, M. J., Ahmad, S., & Ahmad, M. (2021). Potential third-order nonlinear optical response facilitated by intramolecular charge transfer in a simple Schiff base molecule: Experimental and theoretical exploration. ACS Omega, 6(9), 6185–6194.*

Khan, S. A., Razvi, M. A. N., Bakry, A. H., Afzal, S. M., Asiri, A. M., & El-Daly, S. A. (2015). Microwave assisted synthesis, spectroscopic studies and nonlinear optical properties of bis-chromophores. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 685–692.*

Fatima, A., Ali, A., Shabbir, S., Khan, M., Mehkoom, M., Afzal, S. M., Ahmad, M., & Ahmad, S. (2022). Synthesis, crystal structure, characterization, Hirshfeld analysis, molecular docking and DFT calculations of 5-phenylamino-isophthalic acid: A good NLO material. Journal of Molecular Structure, 132791.

Mehkoom, M., Afzal, S. M., Ahmad, S., & Khan, S. A. (2021). Physicochemical and nonlinear optical properties of novel environmentally benign heterocyclic azomethine dyes: Experimental and theoretical studies. PLOS ONE, 11(9), e0161613.*

Dr. Shyamal Mondal | Best Research Article Award

Dr. Shyamal Mondal | Best Research Article Award

Defence Institute of Advanced Technology | India

Shyamal Mondal is a leading researcher with an h-index of 9, 58 publications, and 293 citations across 235 documents, demonstrating significant contributions in photonics, terahertz technologies, and ultrafast optics. He earned his Ph.D. in Physics and Meteorology from the Indian Institute of Technology Kharagpur and is currently a faculty member at SRM Institute of Science and Technology, Kattankulathur, India. His research focuses on terahertz imaging and antenna design, deep learning for image enhancement, nonlinear optical phenomena, ultrafast fiber lasers, and advanced materials such as carbon nanostructures and MXenes. Dr. Mondal has advanced interdigitated photoconductive antennas, coherent mid-infrared laser sources, and modelocked fiber lasers, integrating theoretical and experimental approaches. He has published in high-impact journals including ACS Applied Optical Materials, Optics Express, and Journal of Applied Physics, and presented his work at international conferences. His contributions have strengthened the fields of terahertz communications, optical nonlinearity, and laser technologies. Dr. Mondal continues to drive innovation, mentoring emerging researchers, and bridging fundamental science with applied photonics solutions, thereby expanding the frontiers of optical and terahertz research.

Profiles : Google Scholar | Orcid | Scopus | Research Gate

Featured Publications

Mondal, S., Jampani, K., Raj, A. R., Roy Chowdhury, D., & Sethi, A. (2025). Implementing W-Net deep learning for terahertz image enhancement and segmentation. Engineering Research Express.

Mondal, S., Raj, A. R., & Saha, S. (2024). Advancements in the use of artificial saturable absorbers for modelocking of 2 µm ultrafast fiber lasers. Annalen der Physik.

Rathinasamy, V., Thipparaju, R. R., Boby, E. N. F., & Mondal, S. (2022). Interdigitated photoconductive antenna for future wireless communications. Microwave and Optical Technology Letters, 64(12), 2189–2196.

Boby, E. N. F., Prajapati, J., Rathinasamy, V., Mukherjee, S., & Mondal, S. (2022). Parametric investigation of interdigitated photoconductive antenna for efficient terahertz applications. Arabian Journal for Science and Engineering, 47(3), 3597–3609.

Mitra, N., Patra, A. K., Singh, S. P., Mondal, S., Datta, P. K., & Varshney, S. K. (2020). Interfacial delamination in glass-fiber/polymer-foam-core sandwich composites using singlemode–multimode–singlemode optical fiber sensors: Identification based on experimental investigation. Journal of Sandwich Structures and Materials.

Mondal, S., Mukherjee, S., Singh, S. P., Rand, S. C., Bhattacharya, S., Das, A. C., & Datta, P. K. (2016). Dynamic gain aperture modelocking in picosecond regime based on cascaded second-order nonlinearity. Optics Express, 24(15), 15274–15285.

Mr. Weijiang Xu | Best Researcher Award

Mr. Weijiang Xu | Best Researcher Award

Guilin University of Electronic Technology | China

Dr. Weijiang Xu is a Lecturer at the School of Optoelectronic Engineering, Guilin University of Electronic Technology. He earned his Doctor of Science (2024) and Master of Science (2018) in Physics from Harbin Institute of Technology, following his Bachelor’s degree from Lingnan Normal University in 2016. His research centers on optical fiber sensors, quantum dot photonics, and upconversion luminescence for multifunctional sensing applications. Dr. Xu has authored 17 scientific documents with over 120 citations and maintains an h-index of 8, reflecting his growing influence in the field of optical materials and photonic sensing. His representative works, published in leading journals such as Optics Express, Optics Letters, Journal of Lightwave Technology, and Optics Communications, explore innovative fiber-based devices for temperature, curvature, and flow sensing. He has also contributed to the development of several patented optical fiber sensing technologies in China. Dr. Xu’s recent advancements include bubble-tunable and calibration-free optical fiber sensors employing quantum dots-filled liquid cores. His research continues to bridge nanomaterials with optical engineering for advanced environmental and biomedical sensing. With a record of impactful publications and technological innovation, Dr. Xu is emerging as a promising scholar in the field of optoelectronic sensing.

Profile :  Scopus 

Featured Publications

Xu, W., Li, Y., Shang, J., Wang, Y., Hou, L., Liu, Y., & Qu, S. (2022). Optical fiber sensor based on upconversion luminescence for synchronous temperature and curvature sensing. Optics Express, 30(18), 33136–33136.

Xu, W., Qu, J., Liu, Y., Bai, J., Li, Y., & Qu, S. (2023). Optical fiber inclinometer with dynamically controllable excitation length of quantum dots liquid-core waveguide based on a photo-controlled bubble. Optics Letters, 48(6), 1403–1406.

Xu, W., Qu, J., Liu, Y., Bai, J., Li, Y., & Qu, S. (2023). A calibration-free fiber sensor based on CdZnSe/ZnSe/ZnS quantum dots for real-time monitoring of human thermal activities. Measurement, 206, 112315.

Xu, W., Liu, Y., Li, Y., & Qu, S. (2024). Horizontal clinometer based on a movable bubble in the arc-shaped quantum dots liquid cavity. Journal of Lightwave Technology, 42(6), 2193–2199.

Qu, J., Zhang, Y., Ling, M., & Xu, W.* (2025). Heat-typed fiber liquid flow sensor with wide sensing range and high sensitivity. Journal of Lightwave Technology, 43(1), 369–375.

Dr. Kousik Bera | Best Paper Award

Dr. Kousik Bera | Best Paper Award

Indian Institute of Technology Bombay | India

Dr. Kousik Bera is a research scholar at the Indian Institute of Technology Bombay, specializing in condensed matter physics, quantum materials, and spectroscopic techniques. He has authored 11 peer-reviewed publications, achieving over 45 citations with an h-index of 4, reflecting the quality and influence of his research. His work integrates Raman spectroscopy, ultrafast nonlinear optics, and quantum photonics to address key challenges in material science and quantum technology. Dr. Bera’s studies on wafer-scale hexagonal boron nitride (hBN) films have provided critical insights into the role of defects, wrinkles, and impurities in thermal transport, with implications for next-generation nanoelectronic devices. He has also contributed to the development of polarization-entangled photon sources using type-0 PPKTP crystals, advancing quantum communication and cryptography. His collaborative publications in Physical Review B, Journal of Applied Physics, Nanotechnology, Optical Materials, and Optics Communications highlight his multidisciplinary approach. With strong expertise in 2D materials, superconductivity, and quantum criticality, Dr. Bera’s research is paving the way for breakthroughs in photonic devices and quantum technologies. His academic productivity and impactful contributions make him a promising candidate for recognition and awards in physics and materials research.

Profile : Orcid

Featured Publications

Bright source of degenerate polarization-entangled photons using type-0 PPKTP crystal: Effects of accidental coincidences
Optics Communications, 2025 – Demonstrated a high-brightness entangled photon source, relevant for quantum communication and cryptography.

Surface-enhanced Raman scattering-based sensing and ultrafast nonlinear optical properties of silver–hexagonal boron nitride nanocomposites achieved by femtosecond laser ablation
Optical Materials, 2024 – Reported novel nanocomposites with enhanced SERS activity and nonlinear optical response for sensing applications.

Nanostructured bi-metallic Pd–Ag alloy films for surface-enhanced Raman spectroscopy-based sensing application
Journal of Vacuum Science & Technology A, 2024 – Developed bimetallic alloy films for ultrasensitive SERS-based detection.

Decoupling the roles of defects/impurities and wrinkles in thermal conductivity of wafer-scale hBN films
Journal of Applied Physics, 2023 – Provided critical insights into thermal transport mechanisms in large-area hBN films.

Surface-phase superconductivity in a Mg-deficient V-doped MgTi₂O₄ spinel
Physical Review B, 2023 – Investigated unconventional superconductivity and surface effects in spinel oxides.