Mr. Weijiang Xu | Best Researcher Award

Mr. Weijiang Xu | Best Researcher Award

Guilin University of Electronic Technology | China

Dr. Weijiang Xu is a Lecturer at the School of Optoelectronic Engineering, Guilin University of Electronic Technology. He earned his Doctor of Science (2024) and Master of Science (2018) in Physics from Harbin Institute of Technology, following his Bachelor’s degree from Lingnan Normal University in 2016. His research centers on optical fiber sensors, quantum dot photonics, and upconversion luminescence for multifunctional sensing applications. Dr. Xu has authored 17 scientific documents with over 120 citations and maintains an h-index of 8, reflecting his growing influence in the field of optical materials and photonic sensing. His representative works, published in leading journals such as Optics Express, Optics Letters, Journal of Lightwave Technology, and Optics Communications, explore innovative fiber-based devices for temperature, curvature, and flow sensing. He has also contributed to the development of several patented optical fiber sensing technologies in China. Dr. Xu’s recent advancements include bubble-tunable and calibration-free optical fiber sensors employing quantum dots-filled liquid cores. His research continues to bridge nanomaterials with optical engineering for advanced environmental and biomedical sensing. With a record of impactful publications and technological innovation, Dr. Xu is emerging as a promising scholar in the field of optoelectronic sensing.

Profile :  Scopus 

Featured Publications

Xu, W., Li, Y., Shang, J., Wang, Y., Hou, L., Liu, Y., & Qu, S. (2022). Optical fiber sensor based on upconversion luminescence for synchronous temperature and curvature sensing. Optics Express, 30(18), 33136–33136.

Xu, W., Qu, J., Liu, Y., Bai, J., Li, Y., & Qu, S. (2023). Optical fiber inclinometer with dynamically controllable excitation length of quantum dots liquid-core waveguide based on a photo-controlled bubble. Optics Letters, 48(6), 1403–1406.

Xu, W., Qu, J., Liu, Y., Bai, J., Li, Y., & Qu, S. (2023). A calibration-free fiber sensor based on CdZnSe/ZnSe/ZnS quantum dots for real-time monitoring of human thermal activities. Measurement, 206, 112315.

Xu, W., Liu, Y., Li, Y., & Qu, S. (2024). Horizontal clinometer based on a movable bubble in the arc-shaped quantum dots liquid cavity. Journal of Lightwave Technology, 42(6), 2193–2199.

Qu, J., Zhang, Y., Ling, M., & Xu, W.* (2025). Heat-typed fiber liquid flow sensor with wide sensing range and high sensitivity. Journal of Lightwave Technology, 43(1), 369–375.

Dr. Kousik Bera | Best Paper Award

Dr. Kousik Bera | Best Paper Award

Indian Institute of Technology Bombay | India

Dr. Kousik Bera is a research scholar at the Indian Institute of Technology Bombay, specializing in condensed matter physics, quantum materials, and spectroscopic techniques. He has authored 11 peer-reviewed publications, achieving over 45 citations with an h-index of 4, reflecting the quality and influence of his research. His work integrates Raman spectroscopy, ultrafast nonlinear optics, and quantum photonics to address key challenges in material science and quantum technology. Dr. Bera’s studies on wafer-scale hexagonal boron nitride (hBN) films have provided critical insights into the role of defects, wrinkles, and impurities in thermal transport, with implications for next-generation nanoelectronic devices. He has also contributed to the development of polarization-entangled photon sources using type-0 PPKTP crystals, advancing quantum communication and cryptography. His collaborative publications in Physical Review B, Journal of Applied Physics, Nanotechnology, Optical Materials, and Optics Communications highlight his multidisciplinary approach. With strong expertise in 2D materials, superconductivity, and quantum criticality, Dr. Bera’s research is paving the way for breakthroughs in photonic devices and quantum technologies. His academic productivity and impactful contributions make him a promising candidate for recognition and awards in physics and materials research.

Profile : Orcid

Featured Publications

Bright source of degenerate polarization-entangled photons using type-0 PPKTP crystal: Effects of accidental coincidences
Optics Communications, 2025 – Demonstrated a high-brightness entangled photon source, relevant for quantum communication and cryptography.

Surface-enhanced Raman scattering-based sensing and ultrafast nonlinear optical properties of silver–hexagonal boron nitride nanocomposites achieved by femtosecond laser ablation
Optical Materials, 2024 – Reported novel nanocomposites with enhanced SERS activity and nonlinear optical response for sensing applications.

Nanostructured bi-metallic Pd–Ag alloy films for surface-enhanced Raman spectroscopy-based sensing application
Journal of Vacuum Science & Technology A, 2024 – Developed bimetallic alloy films for ultrasensitive SERS-based detection.

Decoupling the roles of defects/impurities and wrinkles in thermal conductivity of wafer-scale hBN films
Journal of Applied Physics, 2023 – Provided critical insights into thermal transport mechanisms in large-area hBN films.

Surface-phase superconductivity in a Mg-deficient V-doped MgTi₂O₄ spinel
Physical Review B, 2023 – Investigated unconventional superconductivity and surface effects in spinel oxides.