Prof. Alexey Kavokin | Most Cited Researcher Award

Prof. Alexey Kavokin | Most Cited Researcher Award

Abrikosov Center for Theoretical Physics | Russia

Alexey V. Kavokin is a theoretical physicist affiliated with the Abrikosov Center for Theoretical Physics in Moscow, Russian Federation, recognized for his extensive contributions to exciton-polariton physics, spin dynamics, and semiconductor photonics. He holds a Master’s degree in Physics from Saint Petersburg State Polytechnical University (1986–1992) and earned his PhD in Physics (Coherent Light and Matter) from the Ioffe Institute, Saint Petersburg (1992–1993). Kavokin has held research appointments internationally, including service at CNR-SPIN in Rome, Italy (2014–2018). His research spans excitons, spin phenomena, lasers, and semiconductor systems, with additional interests in topological photonics, neuromorphic polariton networks, optical spin Hall effects, and polariton condensate dynamics. He has authored over 560 documents, accumulating more than 19,000 citations and achieving an h-index of 68, reflecting his broad influence across optics, condensed matter physics, and spin-optronics. His work includes investigations of polariton lattices, topological photonic states, spin noise in Bose-Einstein condensates, vortex molecules, and room-temperature optical spin Hall transport. His ongoing scholarship continues to shape the fields of exciton-polariton condensates, semiconductor microcavities, and polariton-based devices.

Profiles : Scopus | Orcid

Featured Publications

Sedov, E., & Kavokin, A. (2024). Polariton lattices as binarized neuromorphic networks. arXiv. https://doi.org/10.48550/arXiv.2401.07232

Guoguang, R., Kavokin, A., & Sawan, M. (2024). Optical biosensor based on porous silicon and Tamm plasmon polariton for detection of CagA antigen of Helicobacter pylori. Sensors. https://doi.org/10.3390/s24165153

Kavokina, S., Samyshkin, V., Cao, J., Abramov, A., Osipov, A., Essaka, S. P., Khalimov, N., Bodunov, D., & Kavokin, A. (2024). Titanium-based metasurfaces for optoelectronics. Nanomaterials. https://doi.org/10.3390/nano14010056

Dr. Kousik Bera | Editorial Board Member

Dr. Kousik Bera | Editorial Board Member

Indian Institute of Technology Bombay | India

Kousik Bera is an emerging researcher in optical physics and advanced materials science, with an h-index of 4, 11 research documents, and 48 citations across 44 citing works. He earned his research training at premier Indian institutions, focusing extensively on Raman spectroscopy, thermal transport in two-dimensional materials, nonlinear optics, and quantum photonics. His experience spans studies on hexagonal boron nitride (hBN), GaN nanowall networks, Heusler alloys, Pd–Ag nanostructures, and entangled photon generation using PPKTP crystals. He has contributed to prestigious journals such as Optics Communications, Physical Review B, Journal of Applied Physics, Applied Physics Letters, Optical Materials, and Nanotechnology. His research interests include 2D materials, ultrafast laser–matter interactions, spectroscopy-driven materials characterization, superconductivity, and quantum-enhanced optical systems. Bera’s work integrates experimental materials science with quantum photonic applications, highlighting his interdisciplinary expertise. His contributions have supported advancements in thermal conductivity engineering, strain analysis, nonlinear optical behavior, and surface-enhanced Raman spectroscopy (SERS). He has collaborated with multiple national and international research groups, extending the impact of his work across several domains of condensed matter physics. With a steadily growing publication record and diversified research output, he continues to advance innovative spectroscopic and nanomaterial-based methodologies.

Profiles : Google Scholar | Scopus Orcid

Featured Publications

Bera, K., Dubey, P. K., Kumar, A., & Jha, M. (2025). Bright source of degenerate polarization-entangled photons using type-0 PPKTP crystal: Effects of accidental coincidences. Optics Communications, 132401. https://doi.org/10.1016/j.optcom.2025.132401

Bera, K., Moram, S. S. B., Banerjee, D., Lahiri, J., & Rao Soma, V. (2024). Surface enhanced Raman scattering-based sensing and ultrafast nonlinear optical properties of silver-hexagonal boron nitride nanocomposites achieved by femtosecond laser ablation. Optical Materials, 157, 116393. https://doi.org/10.1016/j.optmat.2024.116393

Das, N. M., Chauhan, A., Bharati, M. S. S., Bera, K., et al. (2024). Nanostructured bi-metallic Pd–Ag alloy films for surface-enhanced Raman spectroscopy-based sensing application. Journal of Vacuum Science & Technology A, 42(5). https://doi.org/10.1116/6.0003748

Bera, K., Chugh, D., Bandopadhyay, A., Tan, H. H., Roy, A., & Jagadish, C. (2023). Decoupling the roles of defects/impurities and wrinkles in thermal conductivity of wafer-scale hBN films. Journal of Applied Physics, 134(15). https://doi.org/10.1063/5.0168186

Rahaman, A., Paramanik, T., Pal, B., Pal, R., Maji, P., Bera, K., et al. (2023). Surface-phase superconductivity in a Mg-deficient V-doped MgTi₂O₄ spinel. Physical Review B, 107(24), 245124. https://doi.org/10.1103/physrevb.107.245124

Mr. Shehzad Khan | Best Researcher Award

Mr. Shehzad Khan | Best Researcher Award

Nanjing University of Science and Technology | China

Mr. Shehzad Khan is a promising Pakistani quantum physicist with a growing research profile in the fields of quantum optics, quantum information, plasmonics, and nonlinear optics. With an h-index of 2, 3 published documents, and 7 citations, he has contributed to several high-impact journals, including Results in Physics, The European Physical Journal Plus, International Journal of Theoretical Physics, Journal of Magnetism and Magnetic Materials, and Physics Letters A. He completed his Bachelor’s degree in Physics from the University of Malakand (2019–2023), where his thesis focused on “Manipulation of Spectral Hole Burning in Atomic Medium by Doppler Broadening Effect.” His research expertise includes density matrix formalism, optical solitons, Goos-Hänchen shift, photonic spin Hall effect, and surface plasmon polaritons. Shehzad has demonstrated strong analytical and computational skills using Mathematica, MATLAB, and LaTeX, coupled with proficiency in data analysis and technical writing. Recognized for his academic excellence, he received the Higher Education Commission (HEC) Laptop Award for outstanding performance and an HEC Merit and Need-Based Scholarship. With a clear vision to advance the understanding of light-matter interaction and quantum systems, Shehzad Khan aspires to make impactful contributions to modern quantum science and optical physics.

Profile : Scopus

Featured Publications

Khan, S., Bilal, M., Uddin, S., Akgül, A., & Riaz, M. B. (2024). Spherical manipulation of lateral shifts in reflection and transmission through chiral medium. Results in Physics, 107647.

Khan, S., Saeed, M., Khan, M. A., Aldosary, S. F., & Ahmad, S. Coherent manipulation of optical solitons in four-level N-type atomic medium. International Journal of Theoretical Physics.

Ullah, R., Khan, S., Amina, S., & Javaid, S. Tunable cratering of lateral Goos–Hänchen shift in reflection and transmission of structured light in a chiral atomic medium. The European Physical Journal Plus.

Ullah, H., Khan, S., & Bilal, M. Localized electric and magnetic tangent loss via parity-time symmetry in induced high magneto-optical atomic medium. Journal of Magnetism and Magnetic Materials.

Ahmad, M., Khan, S.*, Shah, S. M. H., Salman, M., & Yousaf, M. (2025). Coherent manipulation of sensitivity of structure plasmon polariton waves. The European Physical Journal Plus.

Prof. Dr. Galina Makeeva | Best Researcher Award

Prof. Dr. Galina Makeeva | Best Researcher Award

Penza State University | Russia

Dr. Galina Makeeva is a highly accomplished physicist and researcher at the University of Penza, Russian Federation, specializing in terahertz photonics, graphene plasmonics, and magneto-optical materials. With an impressive research portfolio of 115 scientific publications, her studies have garnered 236 citations and an h-index of 8, demonstrating her sustained impact in the field. Dr. Makeeva’s research focuses on the theoretical modeling and numerical simulation of electromagnetic wave interactions with advanced nanostructures such as graphene nanoribbons, metasurfaces, and nonlinear semiconductor systems. Her pioneering work on magnetically tunable and electrically controllable metasurfaces has opened new pathways for developing next-generation terahertz and mid-infrared optoelectronic devices. She has published extensively in top-tier journals including Optics and Spectroscopy, Technical Physics, and the Journal of Experimental and Theoretical Physics. Through her contributions, Dr. Makeeva has advanced the understanding of graphene-based photonic platforms, bridging the gap between classical electromagnetics and emerging nanophotonic technologies. Her innovative and interdisciplinary research continues to shape the evolution of high-frequency devices and photonic materials. Recognized for her academic excellence and scientific rigor, Dr. Makeeva remains at the forefront of developing functional materials for next-generation communication and sensing technologies.

Profile : Scopus

Featured Publications

Makeeva, G. S. (2025). Magnetoplasmonic effects induced by diffraction of terahertz waves on magnetically biased graphene metasurfaces. Journal of Experimental and Theoretical Physics.

Makeeva, G. S. (2025). Tunable polarization magnetooptical effects at scattering of terahertz radiation from graphene nanoribbon gratings in a magnetic field. Journal of Experimental and Theoretical Physics.

Makeeva, G. S. (2025). Numerical simulation of scattering patterns of terahertz waves on graphene nanoribbon arrays in a magnetic field. Technical Physics.

Makeeva, G. S. (2025). Method of nonlinear autonomous blocks with Floquet channels for simulation of nonlinear microwave devices with distributed interaction. Technical Physics.

Makeeva, G. S. (2025). Numerical investigation of the diffraction field of terahertz waves on graphene nanoribbons upon applying a magnetic field. Technical Physics.

Prof. Kazem Jamshidi-Ghale | Best Researcher Award

Prof. Kazem Jamshidi-Ghale | Best Researcher Award

Azarbaijan Shahid Madani University | Iran

Prof. Kazem Jamshidi-Ghaleh is a distinguished physicist at the Department of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran, with extensive experience in optics, photonics, and nonlinear optical phenomena. He holds a Ph.D. in Physics and has contributed over 50 peer-reviewed publications, accumulating more than 800 citations and an h-index of 19, reflecting his influential research in laser-matter interaction, nonlinear refraction, optical limiting, photonic crystals, and nanostructured thin films. Dr. Jamshidi-Ghaleh’s work spans experimental and theoretical studies on optical bistability, ultrafast laser processing, femtosecond laser interactions with materials, and the optical characterization of nanocomposites and dye molecules. He has led several projects on electrically tunable photonic devices and advanced optical measurement techniques such as moiré deflectometry. His research has been recognized in international journals including Optics Communications, Applied Physics A, and The European Physical Journal D. In addition to his research, he has mentored graduate students and collaborated with multidisciplinary teams on photonic materials and nanostructure applications. Dr. Jamshidi-Ghaleh continues to advance the field of photonics, contributing both fundamental insights and practical applications in optical materials and devices. His achievements highlight his commitment to scientific innovation, education, and the development of photonic technologies.

Profile : Google Scholar

Featured Publications

Jamshidi-Ghaleh, K., Salmani, S., & Ara, M. H. M. (2007). Nonlinear responses and optical limiting behavior of fast green FCF dye under a low power CW He–Ne laser irradiation. Optics Communications, 271(2), 551–554. https://doi.org/10.1016/j.optcom.2007.01.003

Tohidi, T., Jamshidi-Ghaleh, K., Namdar, A., & Abdi-Ghaleh, R. (2014). Comparative studies on the structural, morphological, optical, and electrical properties of nanocrystalline PbS thin films grown by chemical bath deposition using two different … Materials Science in Semiconductor Processing, 25, 197–206. https://doi.org/10.1016/j.mssp.2014.04.003

Jamshidi-Ghaleh, K., & Mansour, N. (2004). Nonlinear refraction measurements of materials using the moiré deflectometry. Optics Communications, 234(1–6), 419–425. https://doi.org/10.1016/j.optcom.2004.01.057

Mansour, N., Jamshidi-Ghaleh, K., & Ashkenasi, D. (2006). Formation of conical microstructures of silicon with picosecond laser pulses in air. Journal of Laser Micro/Nanoengineering, 1, 10.2961. https://doi.org/10.2961/jlmn.2006.1.10

Mohammad-Jafarieh, P., Akbarzadeh, A., Salamat-Ahangari, R., … Jamshidi-Ghaleh, K. (2021). Solvent effect on the absorption and emission spectra of carbon dots: Evaluation of ground and excited state dipole moment. BMC Chemistry, 15(1), 53. https://doi.org/10.1186/s13065-021-00789-1

Dr. Ashish Varma | Young Scientist Award

Dr. Ashish Varma | Young Scientist Award

K. N. Government P. G. College, Gyanpur, Bhadohi | India

Dr. Ashish Varma is an accomplished physicist and Assistant Professor at K. N. Government P. G. College, Gyanpur, Bhadohi, India. He earned his Ph.D. in Physics from the University of Allahabad in 2022 and has established himself as an emerging researcher in plasma physics, laser–matter interaction, and nanostructured materials. With 31 publications, over 447 citations from 117 documents, and an h-index of 13, Dr. Varma’s work demonstrates significant impact in nonlinear laser-plasma interactions, electron Bernstein wave excitation, and nanocluster plasma dynamics. His recent studies focus on laser beam–assisted plasma heating, surface plasma wave generation, and nonlinear absorption in arrays of vertically aligned carbon nanotubes. Dr. Varma has contributed to leading journals such as Optik, Laser Physics, Journal of the Korean Physical Society, and Optical and Quantum Electronics. He has also explored computational condensed matter physics, investigating electronic, structural, and optical properties of advanced materials. A recipient of the UGC Junior Research Fellowship (JRF), he continues to advance fundamental understanding of laser-plasma coupling phenomena with applications in photonics and nanotechnology. Through his active research, Dr. Varma is contributing to the development of next-generation optical and plasma-based materials and technologies.

Profile: Google Scholar | Orcid | Scopus

Featured Publications

Varma, A., Kumar, A., Mishra, S. P., Kumar, A., & Kumar, A. (2025). Surface plasma wave aided Laguerre–Gaussian laser beam second harmonic generation in arrays of vertically aligned carbon nanotube over metal surface. Journal of Laser Applications, 37(8), 7–12. https://doi.org/10.2351/7.0001819

Vishwakarma, M. K., Mishra, S. P., Kumar, A., Kumar, A., & Varma, A. (2025). Enhanced electron heating by electron plasma wave assisted beat wave of two different profile laser beams in magnetized collisional plasma with density rippled. Journal of the Korean Physical Society, 86(7), 1–8. https://doi.org/10.1007/s40042-025-01446-y

Ali, K., Kumar, S., Kumar, A., & Varma, A. (2025). Influence of field optimization property of Hermite cosh-Gaussian laser beam on nonlinear absorption in arrays of vertically aligned cylindrical carbon nanotubes. Radiation Effects and Defects in Solids, 180(4), 245–259. https://doi.org/10.1080/10420150.2025.2484740

Ansari, A., Patel, M. S., Mishra, S. P., Kumar, A., Kumar, A., & Varma, A. (2025). Excitation of large-amplitude electron plasma wave by counterpropagation of two laser beams in spherical nanoparticles. Laser Physics, 35(4), 046001. https://doi.org/10.1088/1555-6611/adc559

Kumar, S., Ali, K., Kumar, A., Kumar, A., Mishra, S. P., & Varma, A. (2025). Langmuir wave-assisted two-photon decay of an amplitude-modulated Gaussian laser beam in rippled density plasma. Arabian Journal for Science and Engineering, 50(1), 112–122. https://doi.org/10.1007/s13369-024-09234-9

Prof. Jean-Patrick Connerade | Best Researcher Award

Prof. Jean-Patrick Connerade | Best Researcher Award

Imperial College London | United Kingdom

Jean-Patrick Connerade is an Emeritus Professor of Physics at Imperial College London and a distinguished member of the European Academy of Sciences, Arts and Letters (EASAL) in Paris. He holds a Doctor of Science (D.Sc.) degree from the University of London and has made pioneering contributions to atomic and molecular physics, particularly in the study of quantum confinement, atomic structure, and resonances in confined atoms and ions. Over his illustrious career, Professor Connerade has published more than 213 scientific documents, amassing 4,363 citations and achieving an impressive h-index of 30, reflecting his enduring impact on the global scientific community. His notable works include “The Arrow of Time in Quantum Theory” (2025), “The Atom at the Heart of Physics” (2023), and studies on C₆₀ spin-charging and confinement resonances. A prolific author and thought leader, he has contributed extensively to understanding the fundamental behavior of atoms under confinement and the crossover between simple and complex quantum systems. Recognized internationally for his scholarship, Professor Connerade continues to inspire physicists worldwide through his deep insights into atomic theory and his leadership in advancing interdisciplinary research in quantum and optical physics.

Profiles : Orcid | Scopus

Featured Publications

Connerade, J. P. (2025). The arrow of time in quantum theory. Atoms, 13(11), 86. https://doi.org/10.3390/atoms13110086

Connerade, J. P. (2023). The atom at the heart of physics. Atoms.

Connerade, J. P. (2021). A new angle on resonances in confined atoms and ions. Physica Scripta.

Connerade, J. P. (2018). On the perturbation of the 6snd 1,3D₂ series by the 5d7d 1D₂ state of barium. Laser Physics.

Connerade, J. P. (2015). C₆₀ spin-charging with an eye on a quantum computer. Journal of Physics B: Atomic, Molecular and Optical Physics.

Connerade, J. P. (2010). Initial considerations on the relationship between the optical absorption and the thermal conductivity in dielectrics. Journal of Physics D: Applied Physics.

Dr. Christopher Mayero | Breakthrough Research Award

Dr. Christopher Mayero | Breakthrough Research Award

Tom Mboya University | Kenya

Christopher Mayero is a Tutorial Fellow in Physics at Tom Mboya University, Homabay, Kenya, whose research centers on quantum optics, quantum information, and light–matter interaction dynamics. His scholarly contributions explore the Jaynes–Cummings and anti-Jaynes–Cummings (AJC) models, focusing on photon statistics, Rabi oscillations, atomic population inversion, and entanglement behavior in non-classical systems. Mayero has published five peer-reviewed papers indexed in Scopus, accumulating five citations and an h-index of 1, with several additional preprints addressing advanced topics in quantum coherence, squeezed light, and quantum teleportation. His work, featured in Quantum Information Processing and other international journals, provides theoretical insights applicable to quantum computing and quantum communication. A collaborator with scholars such as Joseph Akeyo Omolo and Stephen Onyango Okeyo, Mayero’s research aims to deepen the understanding of quantum field–atom interactions and contribute to Africa’s growing quantum science community. Through his commitment to teaching and research excellence, he continues to inspire emerging physicists and expand the frontier of theoretical quantum technologies.

Profiles : ScopusOrcid | Google Scholar

Featured Publications

Mayero, C., & Omolo, J. A. (2025). Superposition of red- and blue-sideband processes in interacting qubits: Effects of residual detuning. Quantum Information Processing, 24(10), 315.

Mayero, C. (2025). Atomic non-classicality: A study of the anti-Jaynes–Cummings interaction. Quantum Information Processing, 24(8), 259.

Mayero, C., & Omolo, J. A. (2024). Anti-Jaynes–Cummings interaction of a two-level atom with squeezed light: Photon statistics, atomic population inversion, and entropy of entanglement. Quantum Information Processing, 23(5), 182. https://doi.org/10.1007/s11128-024-04390-1

Mayero, C., & Omolo, J. A. (2024). Exploring Rabi oscillations, maximally entangled states, and perfect teleportation in the anti-Jaynes–Cummings interaction: Insights into quantum dynamics and entanglement applications. In Current Research Progress in Physical Science (Vol. 4). BP International. https://doi.org/10.9734/bpi/crpps/v4/2566

Mayero, C. (2023). Photon statistics and quantum field entropy in the anti-Jaynes–Cummings model: A comparison with the Jaynes–Cummings interaction. Quantum Information Processing, 22(5), 412. https://doi.org/10.1007/s11128-023-03912-7

Prof. Afzal S. M. | Best Researcher Award

Prof. Afzal S. M. | Best Researcher Award

Physics Department, Aligarh Muslim University | India

Prof. S. M. Afzal is a Professor of Physics at Aligarh Muslim University, India, with over 25 years of experience in teaching and research. He obtained his Ph.D. in Physics from Aligarh Muslim University in 1997, specializing in atomic and laser spectroscopy. His research focuses on high-resolution spectroscopy, nonlinear optics, photonic materials, and optoelectronic applications. Prof. Afzal has made significant contributions to the development of experimental facilities and has conducted extensive studies on light–matter interactions using advanced laser and optical techniques. He has published more than 54 research papers in reputed international journals, achieving over 542 citations, an h-index of 12, and an i10-index of 17, reflecting the strong impact of his scholarly work. In addition, he has successfully completed five funded research projects and guided more than twenty postgraduate theses. His work integrates experimental and computational approaches for exploring nonlinear optical properties of organic and inorganic systems, contributing to advancements in photonics and laser technology. Through his dedicated research and mentorship, Prof. Afzal continues to play a vital role in advancing modern optical physics and inspiring the next generation of scientists.

Profiles : Research GateGoogle Scholar

Featured Publications

El-Shishtawy, R. M., Al-Zahrani, F. A. M., Afzal, S. M., Razvi, M. A. N., & Al-amshany, Z. M. (2016). Synthesis, linear and nonlinear optical properties of a new dimethine cyanine dye derived from phenothiazine. RSC Advances, 6(94), 91546–91556.

Kamaal, S., Mehkoom, M., Ali, A., Afzal, S. M., Alam, M. J., Ahmad, S., & Ahmad, M. (2021). Potential third-order nonlinear optical response facilitated by intramolecular charge transfer in a simple Schiff base molecule: Experimental and theoretical exploration. ACS Omega, 6(9), 6185–6194.*

Khan, S. A., Razvi, M. A. N., Bakry, A. H., Afzal, S. M., Asiri, A. M., & El-Daly, S. A. (2015). Microwave assisted synthesis, spectroscopic studies and nonlinear optical properties of bis-chromophores. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 685–692.*

Fatima, A., Ali, A., Shabbir, S., Khan, M., Mehkoom, M., Afzal, S. M., Ahmad, M., & Ahmad, S. (2022). Synthesis, crystal structure, characterization, Hirshfeld analysis, molecular docking and DFT calculations of 5-phenylamino-isophthalic acid: A good NLO material. Journal of Molecular Structure, 132791.

Mehkoom, M., Afzal, S. M., Ahmad, S., & Khan, S. A. (2021). Physicochemical and nonlinear optical properties of novel environmentally benign heterocyclic azomethine dyes: Experimental and theoretical studies. PLOS ONE, 11(9), e0161613.*

Dr. Shyamal Mondal | Best Research Article Award

Dr. Shyamal Mondal | Best Research Article Award

Defence Institute of Advanced Technology | India

Shyamal Mondal is a leading researcher with an h-index of 9, 58 publications, and 293 citations across 235 documents, demonstrating significant contributions in photonics, terahertz technologies, and ultrafast optics. He earned his Ph.D. in Physics and Meteorology from the Indian Institute of Technology Kharagpur and is currently a faculty member at SRM Institute of Science and Technology, Kattankulathur, India. His research focuses on terahertz imaging and antenna design, deep learning for image enhancement, nonlinear optical phenomena, ultrafast fiber lasers, and advanced materials such as carbon nanostructures and MXenes. Dr. Mondal has advanced interdigitated photoconductive antennas, coherent mid-infrared laser sources, and modelocked fiber lasers, integrating theoretical and experimental approaches. He has published in high-impact journals including ACS Applied Optical Materials, Optics Express, and Journal of Applied Physics, and presented his work at international conferences. His contributions have strengthened the fields of terahertz communications, optical nonlinearity, and laser technologies. Dr. Mondal continues to drive innovation, mentoring emerging researchers, and bridging fundamental science with applied photonics solutions, thereby expanding the frontiers of optical and terahertz research.

Profiles : Google Scholar | Orcid | Scopus | Research Gate

Featured Publications

Mondal, S., Jampani, K., Raj, A. R., Roy Chowdhury, D., & Sethi, A. (2025). Implementing W-Net deep learning for terahertz image enhancement and segmentation. Engineering Research Express.

Mondal, S., Raj, A. R., & Saha, S. (2024). Advancements in the use of artificial saturable absorbers for modelocking of 2 µm ultrafast fiber lasers. Annalen der Physik.

Rathinasamy, V., Thipparaju, R. R., Boby, E. N. F., & Mondal, S. (2022). Interdigitated photoconductive antenna for future wireless communications. Microwave and Optical Technology Letters, 64(12), 2189–2196.

Boby, E. N. F., Prajapati, J., Rathinasamy, V., Mukherjee, S., & Mondal, S. (2022). Parametric investigation of interdigitated photoconductive antenna for efficient terahertz applications. Arabian Journal for Science and Engineering, 47(3), 3597–3609.

Mitra, N., Patra, A. K., Singh, S. P., Mondal, S., Datta, P. K., & Varshney, S. K. (2020). Interfacial delamination in glass-fiber/polymer-foam-core sandwich composites using singlemode–multimode–singlemode optical fiber sensors: Identification based on experimental investigation. Journal of Sandwich Structures and Materials.

Mondal, S., Mukherjee, S., Singh, S. P., Rand, S. C., Bhattacharya, S., Das, A. C., & Datta, P. K. (2016). Dynamic gain aperture modelocking in picosecond regime based on cascaded second-order nonlinearity. Optics Express, 24(15), 15274–15285.